Comparative study of morphological characteristics of Tuini fish (Capoeta damascina) in inland water of Iran using geometic morphometric method

Document Type : Research Paper

Authors

1 MSc., Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Assistant Professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

3 Associate Professr, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

4 Associate Professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

5 Associate Professor, Department of Fisheries, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran

Abstract

Quantifying morphological characteristics of body shape in fishes can help their correct identification as well as understanding of evolutionary history of their different populations. Hence, this study was aimed to compare the morphological characteristics of different population of Tuini fish (Capoeta damascina) in inland-water of Iran using Geometic morphometrics method (GM). In total 373 specimens of Tuini were collected from thirteen rivers of Tigris, Kerman, Jazmoorian, Golf, Hormoz, Isfahan and Namak Lake basins. Then, the lateral surface of their left side photographed and seventeen landmark-points defined and digitized using TpsDig2 software to extract body shape data in (GM). The coordinate data after GPA superimposing, analyzed using PCA, CVA and cluster analysis. The body shape pattern of every population was visualized in relation to consensus shape of total populations. The results revealed a significant difference in the body shape of studied populations (P<0.0001). Their differences were associated to body depth, position of fins and caudal peduncle. The results also showed that populations of Namak Lake basin differentiated in terms of body shape in compare to others one due to a different body shape.

Keywords

Main Subjects


[1]. Abdoli A. 2000. The Inland Water Fishes of Iran. Iranian Museum of Nature and Wildlife, Tehran, 378 pp. (in Persian)
[2]. Adams, D.C., Rohlf, F.J., Slice, D.E., 2004. Geometric morphometrics: Ten years of progress following the ‘Revolution’. Italian Journal of Zoology 71: 5-16.
[3]. Anvarifar, H., Khyabani, A., Farahmand, H., Vatandoust, S., Anvarifar H., Jahageerdar, S., 2011. Detection of morphometric differentiation between isolated up- and downstream populations of Siah Mahi (Capoeta capoeta gracilis) (Pisces: Cyprinidae) in the Tajan River (Iran). Hydrobiologia 673, 41-52.
[4]. Bianco, P.G., Banarescu, P., 1982. A contribution to the knowledge of the Cyprinidae of Iran (Pisces, Cypriniformes). Cybium 6(2), 75-96.
[5]. Banarescu, P., Nalbant, T.T., Goren, M., 1982. The Noemacheiline loaches from Israel (Pisces: Cobitidae: Noemacheilinae). Israel Journal of Zoology 31, 1-25.
[6]. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press.
[7]. Coad, B. 2013. Freshwater fishes of Iran. Available from http://www.briancoad.com Accessed on 19 May 2013.
[8]. Eagderi, S., Esmaeilzadegan, E., Madah, A., 2013. Body shape variation in riffle minnows (Alburnoides eichwaldii De Filippii, 1863) populations of Caspian Sea basin. Journal of Taxonomy and Biosystematics, 5(4), 1-8. (in Persian)
[9]. Eklov P., Jonsson P., 2007. Pike predators induce morphological changes in young perch and roach. Journal of Fish Biology 70, 155-164.
[10].            Guill, J.M., Hood, C.S., Heins, D.C., 2003. Body shape variation within and among three species of darters (Perciformes: Percidae). Ecology of Freshwater Fish 12, 134-140.
[11].            Heidari, A., Mousavi-Sabet, H., Khoshkholgh, M., Esmaeili H.R., Eagderi E., 2013. The impact of Manjil and Tarik dams (Sefidroud River, southern Caspian Sea basin) on morphological traits of Siah Mahi Capoeta gracilis (Pisces: Cyprinidae). International Journal of Aquatic Biology 1(4), 195-201.
[12].            Holtmeier, C.L., 2001. Heterochrony, maternal effects, and phenotypic variation among sympatric pupfishes. Evolution 55, 330-338.
[13].            Januszkiewicz A.J., Robinson B.W., 2007. Divergent walleye (Sander vitreus) mediated inducible defenses in the centrarchid pumpkinseed sunfish (Lepomis gibbosus). Biological Journal of the Linnean Society 90, 25-36.
[14].            Krupp, F., 1985. Systematik und Zoogeographie der Süßwasserfische des levantinischen Grabenbruchsystems und der Ostküste des Mittelmeeres. Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Biologie der Johannes Gutenberg - Universität in Mainz. 215 pp., Anhang: Abbildungen, Karten, Tabellen, 169 pp.
[15].            Langerhans R.B., Layman C.A., Langerhans A.K., DeWitt T.J., 2003. Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of Linnean Society 80, 689-698. 
[16].            Langerhans, R.B., Reznick, D.N., 2010. Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. In: Fish locomotion: an ecoethological perspective (eds. Domenici, P. and Kapoor, B. G.) 200-248. Science Publishers Inc, Enfield.
[17].            Mittelbach, G.G., Osenberg, C.W., Wainwright, P.C., 1999. Variation in feeding morphology between pumpkinseed populations: phenotypic plasticity or evolution? Evolutionary Ecology Research 1, 111-128.
[18].            Mohadasi M., Shabanipour N., Eagderi S., 2013. Habitat-associated morphological divergence in four Shemaya, Alburnus chalcoides (Actinopterygii: Cyprinidae) populations in the southern Caspian Sea using geometric morphometrics analysis. International Journal of Aquatic Biology 1(2), 82-92.
[19].            Robinson, B.W., Wilson, D.S., 1994. Character release and displacement in fishes: a neglected literature. American Naturalist 1994, 596-627.
[20].            Robinson, B.W., Wilson D.S., 1995. Experimentally induced morphological diversity in Trinidadian guppies (Poecilia reticulata). Copeia 1995, 294-305.
[21].            Rohlf, F.J., 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143-2160.
[22].            Rohlf, F.J., 2013. tpsSMALL Version 1.25. Department of Ecology and Evolution, State University of New York at Stony Brook, New-York.
[23].            Ruzzante, D. E., Walde, S. J., Cussac, V. E., Macchi, P.J. and Alonso, M.F. 1998. Trophic polymorphism, habitat and diet segregation in Percichthys trucha (Pisces: Percichthyidae) in the Andes. Biological Journal of the Linnean Society 65, 191-214.
[24].            Samaee S.-M., Patzner R.A., 2011. Morphometric differences among populations of tu'ini, Capoeta damascina (Teleostei: Cyprinidae), in the interior basins of Iran. Journal of Applied Ichthyology, 27(3), 928-933.
[25].            Smith, T.B., Skulason, S., 1996. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics 1996, 111-133.
[26].            Webster M.M., Atton N., Hart P.J.B., Ward A.J.W., 2011.  Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PloSone, 6: e21060.
[27].            Wimberger, P.H., 1994. Trophic polymorphisms, plasticity and speciation in vertebrates. In: Stouder DJ, Fresh KL, Feller RJ, eds. Theory and application in fish feeding ecology. Columbia: University of South Carolina Press 1994, 9-43.
[28].            Zelditch, M. 2004. Geometric morphometrics for biologists: a primer. Academic Press, New York.