Application of nanosilver coated filters for controlling Fungal infections during embryo development in Persian sturgeon (Acipenser persicus): survival rate and amount of silver accumulation in larvae

Document Type : Research Paper

Authors

1 Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran.

2 Breeding and Rearing of Aquatics Department, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran.

3 Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

4 International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

10.22059/jfisheries.2024.383541.1443

Abstract

In this research, silver nanoparticles [AgNPs] were immobilized on zeolite and silica grains as a filtration substrate to control the fungal infection during the incubation period of Persian sturgeon embryos, and the amount of silver accumulation in produced larvae, its effect on survival, and weight of the larvae until the yolk-sac absorption stage were investigated. In each incubator that was fed by a filter, 750 eggs were placed in three replicates of 250. Filters containing 0.2, 0.5 and 1 percent of AgNPs in two states without agent and with aminopropyltriethoxysilane [APTES] coupling agent along with the control (without filter) were the treatments investigated in this research. The measurement of silver concentrations in larvae obtained from the treatment of 0.5 and 1 percent AgNP at the end of the study period showed that the amount of silver accumulation in the 1percent AgNP filter without APTES was significantly higher than the 0.5 percent filters. However, the amount of measured silver was low and did not cause visible external effects in the larvae. Also, in the treatment of 1 percent AgNP-APTES filter, the survival percentage of larvae up to the yolk-sac absorption stage showed a significant increase compared to the control filter treatment.

Keywords

Main Subjects


Alinezhad, S., Abdollahpour, H., Jafari, N., Falahatkar, B., 2020. Effects of thyroxine immersion on Sterlet sturgeon (Acipenser ruthenus) embryos and larvae: Variations in thyroid hormone levels during development. Aquaculture 519, 734745. DOI: 10.1016/j.aquaculture.2019.734745
Aramli, M.S., Nazari, R.M., 2014. Motility and fertility of cryopreserved semen in Persian sturgeon, Acipenser persicus, stored for 30–60 min after thawing. Cryobiology 69(3), 500-502. DOI: 10.1016/j.cryobiol.2014.10.006
Amini, K., Siraj, S.S., Mojazi Amiri, B., Mirhashemi Rostami, S.A., Sharr, A., Hossienzadeh, H., 2012. Evaluation of LHRH-a acute release implantation on final maturation and spawning in not-fully matured broodstocks of Persian sturgeon (Acipenser persicus Borodin, 1897). Iranian Journal of Fisheries Sciences 11(3), 440-459. DORL: 20.1001.1.15622916.2012.11.3.1.1
Anokhina, E.P., Tolkacheva, A.A., Pryakhina, N.A., Syromyatnikov, M.Y., Korneeva, O.S., 2023. Isolation and identification of Saprolegnia spp. from infected sturgeon caviar. Acta Biologica Sibirica 9, 13-21. DOI: 10.5281/zenodo.7679902
Ashaf-Ud-Doulah, M., Islam, S.M., Zahangir, M.M., Islam, M.S., Brown, C., Shahjahan, M., 2021. Increased water temperature interrupts embryonic and larval development of Indian major carp rohu Labeo rohitaAquaculture International 29, 711-722. DOI: 10.1007/s10499-021-00649-x
Bae E, Lee BC, Kim Y, Choi K, Yi J., 2013. Effect of agglomeration of silver nanoparticle on nanotoxicity depression. Korean Journal of Chemical Engineering 30(2), 364-368. DOI: 10.1007/s11814-012-0155-4
Banan, A., Kalbassi, M.R., Bahmani, M. and Sadati, M.Y., 2011. Effects of colored light and tank color on growth indices and some physiological parameters of juvenile beluga (Huso huso). Journal of Applied Ichthyology 27(2), 565-570. DOI: 10.1111/j.1439-0426.2011.01682.x
Banan, A., Kalbassi Masjed Shahi, M.R., Bahmani, M., Yazdani Sadati, M.A., 2016. Toxicity assessment of silver nanoparticles in Persian sturgeon (Acipenser persicus) and starry sturgeon (Acipenser stellatus) during early life stages. Environmental Science and Pollution Research 23, 10139-10144. DOI: 10.1007/s11356-016-6239-7
Bruno, D.W., Wood, B.P., 1999. Saprolegnia and other Oomycetes. In: Woo, P. T. K., Bruno, D.W. (editors), Fish Diseases and Disorders. Viral, Bacterial and Fungal Infections, Vol. 3. CABI Publishing, Wallingford, Oxon, United Kingdom, 930 p.
Cho, K.H., Park, J.E., Osaka, T., Park, S.G., 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochemica Acta 51(5), 956-960. DOI: 10.1016/j.electacta.2005.04.071
Ciulli, S., Volpe, E., Sirri, R., Tura, G., Errani, F., Zamperin, G., Toffan, A., Silvi, M., Renzi, A., Abbadi, M. and Biasini, L., 2020. Multifactorial causes of chronic mortality in juvenile sturgeon (Huso huso). Animals 10(10), 1866. DOI: 10.3390/ani10101866
Drake, P.L., Hazelwood, K.J., 2005. Exposure-related health effects of silver and silver compounds: a review. The Annals of Occupational Hygiene 49, 575-585. DOI: 10.1093/annhyg/mei019
Food and Agriculture Organization (FAO), 2024. FAO Yearbook of Fishery and Aquaculture Statistics 2021 (Rome: FAO Fisheries and Aquaculture Department).
Forneris, G., Bellardi, S., Palmegiano, G.B., Saroglia, M., Sicuro, B., Gasco, L., Zoccarato, I., 2003. The use of ozone in trout hatchery to reduce saprolegniasis incidence. Aquaculture 221, 157-166. DOI: 10.1016/S0044-8486(02)00518-5
Frei, A., Verderosa, A.D., Elliott, A.G., Zuegg, J., Blaskovich, M.A., 2023. Metals to combat antimicrobial resistance. Nature Reviews Chemistry 7(3), 202-224. DOI: 10.1038/s41570-023-00463-4
Ghiasi, M., Khosravi, A.R., Soltani, M., Binaii, M., Shokri, H., Tootian, Z., Rostamibashman, M., Ebrahimzademousavi, H., 2010. Characterization of Saprolegnia isolates from Persian sturgeon (Acipencer persicus) eggs based on physiological and molecular data. Journal de Mycologie Médicale 20(1), 1-7. DOI: 10.1016/j.mycmed.2009.11.005
Hosseini, S.Z., 2012. Effect of filter containing different levels of silver nanoparticles on reduction of egg fungal infections in semirecirculator incubation system of caspian trout (Salmo trutta caspius). Master of Science Thesis. Tarbiat Modares University. IRAN. (In Persian)
Jarić, I. Višnjić-Jeftić, Ž. Cvijanović, G. Gačić, Z. Jovanović, L. Skorić, S., Lenhardt, M. 2011. Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchemical Journal 98, 77-81. DOI: 10.1016/j.microc.2010.11.008
Johari, S.A., 2012. Application of silver nanoparticles for reduction of fungal infections during egg incubation period and possible effects of their release on the alterations of some genomic and physiological parameters in rainbow trout (Oncorhynchus mykiss). PhD Dissertation. Tarbiat Modares University. IRAN. (In Persian)
Johari, S.A., Kalbassi, M.R., Soltani, M., Yu, I.J., 2016. Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquaculture International 24, 23-38. DOI: 10.1007/s10499-015-9906-7
Kawahara, K., Tsuruda, K., Morishita, M., Uchida, M., 2000. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials 16(6), 452-455. DOI: 10.1016/S0109-5641(00)00050-6
Kim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2), 235–242. DOI: 10.1007/s10534-008-9159-2
Kowalska, G., Pankiewicz, U. and Kowalski, R., 2020. Determination of the level of selected elements in canned meat and fish and risk assessment for consumer health. Journal of Analytical Methods in Chemistry 2020(1), 2148794. DOI: 10.1155/2020/2148794
Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J., Xu, X., 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of Zebrafish embryos. ACS Nano 1(2), 133-143. DOI: 10.1021/nn700048y
Li, H., You, Q., Feng, X., Zheng, C., Zeng, X., Xu, H., 2023. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions. Journal of Drug Delivery Science and Technology 80, 104165. DOI: 10.1016/j.jddst.2023.104165
Lv, Y., Liu, H., Wang Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J., Boughton, R.I., 2009. Silver nanoparticle-decorated porous ceramic composite for water treatment. Journal of Membrane Science 331(1-2), 50-60. DOI: 10.1016/j.memsci.2009.01.007
Mohan, Y.M., Lee, K., Premkumar, T., Geckeler, K.E., 2007. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1), 158-164. DOI: 10.1016/j.polymer.2006.10.045
Murr, L.E., 2009. Nanoparticulate materials in antiquity: The good, the bad and the ugly. Materials Characterization 60(4), 261-270. DOI: 10.1016/j.matchar.2008.03.012
Pereira, C., Silva, J.F., Pereira, A.M., Araújo, J. P., Blanco, G., Pintado, J. M., Freire, C., 2011. Hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol. Catalysis Science and Technology 1(5), 784-793. DOI: 10.1039/C1CY00090J
Phong, N.T.P., Thanh, N.V.K., Phuong, P.H., 2009. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams. Journal of Physics: Conference Series 187, 012079. DOI: 10.1088/1742-6596/187/1/012079
Pottinger, T.A., Day, J.G., 1999. A Saprolegnia parasitica challenge system for rainbow trout: assessment of Pyceze as an anti-fungal agent for both fish and ova. Diseases of Aquatic Organisms 36(2), 129-41. DOI: 10.3354/dao036129
Qu, K., Xu, H., Zhao, C., Ren, J., Qu, X., 2011. Amine-linker length dependent electron transfer between porphyrins and covalent amino-modified single-walled carbon nanotubes. RSC advances 1(4), 632-639. DOI: 10.1039/C1RA00010A
Quang, D.V., Sarawade, P.B., Hilonga, A., Kim, J.K., Chai, Y.G., Kim, S.H., Kim, H.T., 2011. Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 389(1), 118-126. DOI: 10.1016/j.colsurfa.2011.08.042
Rach, J.J., Gaikowski, M.P., Howe, G.E., Schreier, T.M., 1998. Evaluation of the toxicity and efficacy of hydrogen peroxide treatments on eggs of warm- and cool water fishes. Aquaculture 165, 11-25. DOI: 10.1016/S0044-8486(98)00248-8
Radosavljevic, V., Milicevic, V., Maksimović-Zorić, J., Veljović, L., Nesic, K., Pavlović M,Ljubojević-Pelić, D., Marković, Z., 2019. Sturgeon diseases in aquaculture. Archivos deMedicina Veterinaria 12(1), 5–20. DOI: 10.46784/e-avm.v12i1.34
Sanpui, P., Murugadoss, A., Prasad, P.V.D., Ghosh, S.S., Chattopadhyay, A., 2008. The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. International Journal of Food Microbiology 124(2), 142-146. DOI:10.1016/j.ijfoodmicro.2008.03.004
Sarkheil, M., Sourinejad, I., Mirbakhsh, M., Kordestani, D., Johari, S.A., 2016. Application of silver nanoparticles immobilized on TEPA-Den-SiO2 as water filter media for bacterial disinfection in culture of Penaeid shrimp larvae. Aquacultural Engineering 74, 17-29. DOI: 10.1016/j.aquaeng.2016.05.003
Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S., 2007. Synthesis and effect of silver Nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine 3(2), 168-171. DOI: 10.1016/j.nano.2007.02.001
Singh, M., Singh, S., Prasad, S., Gambhir, I.S., 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures 3(3), 115-122.
Smith, C.J., Shaw, B.J., Handy, R.D., 2007. Toxicity of single walled carbon nanotubes on rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology 82(2), 94–109. DOI: 10.1016/j.aquatox.2007.02.003
Soloviev, M., Gedanken, A., 2011. Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrasonics Sonochemistry 18(1), 356-362. DOI: 10.1016/j.ultsonch.2010.06.015
Torres-Flores, E.I., Flores-López, N.S., Martínez-Núñez, C.E., Tánori-Córdova, J.C., Flores-Acosta, M., Cortez-Valadez, M., 2021. Silver nanoparticles in natural zeolites incorporated into commercial coating: antibacterial study. Applied Physics A 127, 1-11. DOI: 10.1007/s00339-020-04227-5
Wang, S., Hou, W., Wei, L., Jia, H., Liu, X., Xu, B., 2007. Antibacterial activity of nano SiO2 antibacterial agent grafted on wool surface. Surface and Coating Technology 202(3), 460-465. DOI: 10.1016/j.surfcoat.2007.06.012
Wu, Y., and Zhou, Q., 2012. Dose-and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): Underlying mechanisms for silver nanoparticle developmental toxicity. Aquatic Toxicology 124, 238-246. DOI: 10.1016/j.aquatox.2012.08.009
Zarrinmehr, M.J., 2014. Application of Filters Containing Silver Nanoparticle in the Reduction of Aeromonas hydrophila Septicemia and Assesment of their Potential Releasing of Nanoparticles on the Survival and Physiological Changes of Zebrafish (Danio rerio). Master of Science Thesis. Tarbiat Modares University. IRAN. (In Persian)