Optimization of chitosan extracted from spiny rock lobster (Panulirus homarus) using response surface method

Document Type : Research Paper

Authors

1 Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

2 Department of Fisheries, Ahv, C., Islamic Azad University, Ahvaz, Iran.

10.22059/jfisheries.2025.378188.1432

Abstract

Chitosan, the deacetylation product of chitin, is a natural cationic linear polysaccharide that has been recognized as one of the most promising renewable biopolymers due to its non-toxic, biodegradable, and biocompatible properties. Since chitosan extraction methods are difficult, time-consuming, and sometimes have low yields, it is necessary to optimize and determine the parameters of the extraction process to achieve the best yield. This research used the response surface method (RSM) optimization technique to achieve the highest deacetylation efficiency for extracted chitosan and reduce costs from spiny lobster waste materials. The experimental design was completely randomized in 3 levels (+1, 0, -1) with 5 independent variables as input including; HCl concentration, NaOH concentration, deacetylation time, deacetylation temperature, and demineralization time to determine the best combination of effective variables in chitosan extraction process. The results showed that the highest degree of deacetylation of lobster chitosan happens with 5.13 M HCl concentration, 11.58 h demineralization time, 0.52 NaOH, 2.99 h deacetylation time, and 74.13 °C deacetylation temperatureand. Comparing the values obtained in this experiments with the values predicted by the software had logical relationships that showing the appropriateness of the used model.

Keywords

Main Subjects


Abdel-Salam, H.A., 2013. Evaluation of nutritional quality of commercially cultured Indian white shrimp Penaeus indicus. International Journal of Nutrition and Food Sciences 2(4), 160-166. DOI: 10.11648/j.ijnfs.20130204.11
Amoo, K., Olafadehan, O., Ajayi, T., 2019. Optimization studies of chitin and chitosan production from Penaeus notialis shell waste. African Journal of Biotechnology 18(27), 670-688. DOI: 10.5897/AJB2019.16861
Bello, V., Olafadehan, O., 2021. Comparative investigation of RSM and ANN for multi-response modeling and optimization studies of derived chitosan from Archachatina marginata shell. Alexandria Engineering Journal 60(4), 3869-3899. DOI: 10.1016/j.aej.2021.02.047
Ben Seghir, B., Benhamza, M., 2017. Preparation, optimization and characterization of chitosan polymer from shrimp shells. Journal of Food Measurement and Characterization 11, 1137-1147. DOI: 10.1007/s11694-017-9490-9
Boudouaia, N., Bengharez, Z., Jellali, S., 2019. Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: application for Eriochrome black T removal from aqueous solutions. Applied Water Science 9, 1-12. DOI: 10.1007/s13201-019-0967-z     
Chang, G., Liu, Y., Luo, Z., Ni, K., Zhang, P., Zhou, T., Bai, L., Zhang, C., Wang, X., 2024. Response surface methodology to optimize the sterilization process of slightly acidic electrolyzed water for Chinese shrimp (Fenneropenaeus chinensis) and to investigate its effect on shrimp quality. Food Chemistry X, 101180. DOI: 10.1016/j.fochx.2024.101180
Danarto, Y., Distantina, S., 2016. Optimizing deacetylation process for chitosan production from green mussel (Perna viridis) shell. AIP conference proceedings 1710(1), 030028. DOI: 10.1063/1.4941494
 Dinculescu, D.D., Apetroaei, M. R., Gîjiu, C. L., Anton, M., Enache, L., Schröder, V., Isopescu, R., Rău, I., 2024. Simultaneous optimization of deacetylation degree and molar mass of chitosan from shrimp waste. Polymers 16(2), 170. DOI: 10.3390/polym16020170
Elsoud, M.M.A., Mohamed, S.S., Selim, M.S., Sidkey, N.M., 2023. Characterization and optimization of chitosan production by Aspergillus terreus. Arabian Journal for Science and Engineering 48, 93-106. DOI: 10.1007/s13369-022-07163-z 
Hwang, K.T., Jung, S.T., Lee, G.D., Chinnan, M.S., Park, Y. S., Park, H.J., 2002. Controlling molecular weight and degree of deacetylation of chitosan by response surface methodology. Journal of agricultural and food chemistry 50(7), 1876-1882. DOI: 10.1021/jf011167u
Jiang, T., James, R., Sangamesh, G., Kumbar, C., Laurencin, C.T., S. Kumbar, C., Laurencin, M., Deng (Eds.)., 2014. Natural and synthetic biomedical polymers. Elsevier publication. ISBN: 978-0-12-396983-5
Junceda-Mena, I., García-Junceda, E., Revuelta, J., 2023. From the problem to the solution: Chitosan valorization cycle. Carbohydrate Polymers 309, 120674. DOI: 10.1016/j.carbpol.2023.120674
Kavisri, M., Abraham, M., Namasivayam, S.K.R., Aravindkumar, J., Balaji, D., Sathishkumar, R., Sigamani, S., Srinivasan, R., Moovendhan, M., 2023. Adsorption isotherm, kinetics and response surface methodology optimization of cadmium (Cd) removal from aqueous solution by chitosan biopolymers from cephalopod waste. Journal of Environmental Management 335, 117484. DOI: 10.1016/j.jenvman.2023.117484  
Kozma, M., Acharya, B., Bissessur, R., 2024. Chemical extraction of chitin from American lobster (Homarus americanus) shells optimized through response surface methodology. International Journal of Biological Macromolecules 256, 128462. DOI: 10.1016/j.ijbiomac.2023.128462
Mathew, G.M., Mathew, D.C., Sukumaran, R.K., Sindhu, R., Huang, C.C., Binod, P., Sirohi, R., Kim, S.H., Pandey, A., 2020. Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution 267, 115656. DOI: 10.1016/j.envpol.2020.115656
Moazzeni Jola, B., Roomiani, L., 2017. Effect of chitosan from shrimp (Metapenaeus affinis) on the shelf life of grass carp (Ctenopharyngodon idella) fillet in vacuum packaging. Fisheries 70, 295-308. DOI: 10.22059/jfisheries.2018.247778.1007    
Nguyen, T.T., Barber, A.R., Corbin, K., Zhang, W., 2017. Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresources  and Bioprocessing 4, 1-19. DOI: org/https://doi.org/10.1186/s40643-017-0157-5
Nouri, M., Khodaiyan, F., Razavi, S.H., and Mousavi, M., 2016. Improvement of chitosan production from Persian Gulf shrimp waste by response surface methodology. Food Hydrocolloids 59, 50-58. DOI: 10.1016/j.foodhyd.2015.08.027
Olafadehan, O., Ajayi, T., Amoo, K., 2020. Optimum conditions for extraction of chitin and chitosan from Callinectes amnicola shell waste. Theoretical Foundations of Chemical Engineering 54, 1173-1194. DOI: 10.1134/S0040579520060081
Pădurețu, C.C., Isopescu, R., Rău, I., Apetroaei, M.R., Schröder, V., 2019. Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste. Korean Journal of Chemical Engineering 36, 1890-1899. DOI: 10.1007/s11814-019-0379-7
Samar, M.M., El-Kalyoubi, M., Khalaf, M., Abd El-Razik, M., 2013. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Annals of Agricultural Sciences 58(1), 33-41. DOI: 10.1016/j.aoas.2013.01.006  
Tsegay, Z.T., Agriopoulou, S., Chaari, M., Smaoui, S., Varzakas, T., 2024. Statistical tools to optimize the recovery of bioactive compounds from marine byproducts. Marine Drugs 22(4), 182. DOI: 10.3390/md22040182
V´ azquez-Aldana, M., Sixto-Berrocal, A.M., Arcos-Casarrubias, J.A., Martínez-Trujillo, M.A., Cruz-Díaz, M.R., 2025. Biological and chemical synergy in chitin and chitosan production: The role of process sequencing in shrimp shell waste treatment. International Journal of Biological Macromolecules 306, 141247. DOI: 10.1016/j.ijbiomac.2025.141247
 Weska, R., Moura, J.d., Batista, L.d. M., Rizzi, J., Pinto, L.d. A., 2007. Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. Journal of Food Engineering 80(3), 749-753. DOI: 10.1016/j.jfoodeng.2006.02.006
William, W., Wid, N., 2019. Comparison of extraction sequence on yield and physico-chemical characteristic of chitosan from shrimp shell waste. Journal of Physics: Conference Series 1358, 012002. DOI: 10.1088/1742-6596/1358/1/012002
Zhang, Z., Ma, Z., Song, L., Farag, M.A., 2023. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. Journal of Advanced Research 57, 59-76. DOI: 10.1016/j.jare.2023.11.002