Adhami, B., Amirkolaie, A.K., Oraji, H., Kenari, R.E., 2017. Growth performance, nutrient digestibility and lipase activity in juvenile rainbow trout (Oncorhynchus mykiss) fed fat powder in diet containing emulsifiers (cholic acid and Tween‐80). Aquaculture Nutrition 23(5), 153-1159. DOI: 10,111/anu.12484
Alam, M.S. Teshima, S. Ishikawa, M., Koshio, S., 2015. Effects of ursodeoxycholic acid on growth and digestive enzyme activities of Japanese flounder Paralichthys olivaceus (Temminck & Schlegel). Aquaculture Research, 32, 235-243. DOI: 10.1046/j.1355-557x.2001.00020.x
Alam, M.S., Teshima, S., Ishikawa, M., Koshio, S., 2001. Effects of ursodeoxycholic acid on growth and digestive enzyme activities of Japanese flounder Paralichthys olivaceus (Temminck & Schlegel). Aquaculture Research 32, 235-243. DOI: 10,1046/j.1355-557x.2001.00020.x
AOAC (Association of Official Analytical Chemists). 2005. Official Methods of Analysis: Association of Official Analytical Chemists, 18th ed. Arlington, Virginia.
Asaoka, Y., Terai, S., Sakaida, I., Nishina, H., 2013. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Disease Models & Mechanisms 6(4), 905-914. DOI: 10.1242/dmm.011981
Borges, S.A., Fischer da Silva, A.V., Majorka A., Hooge, D.M., Cummings, K.R., 2004. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poultry Science 83: 1551-1558. DOI: 10.1093/ps/83.9.1551
Boujard, T., Gélineau, A., Covès, D., Corraze, G., Dutto, G., Gasset, E., Kaushik, S., 2004. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 231(1-4), 529-545. DOI: 10.1016/j.aquaculture.2003.11.010
Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., Mylonas, C.C., 2010. Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture 307(1-2), 65-70. DOI: 10.1016/j.aquaculture.2010.07.002
Chiang, J Y (2002). Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocrine reviews, 23, 443-463.
Cho, C.Y., Hynes, J.D., Wood, K.R., Yoshida, H.K., 1994. Development of high-nutrient-dense, low-pollution diets and prediction of aquaculture wastes using biological approaches. Aquaculture 124(1-4), 293-305. DOI: 10.1016/0044-8486(94)90403-0
Chou, R.L., Su, M.S., Chen, H.Y., 2001. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture 193(1-2), 81-89. DOI: 10.1016/S0044-8486(00)00480-4
Di Ciaula, A, Garruti, G, Baccetto, R L, Molina-Molina, E, Bonfrate, L, Portincasa, P , Wang, D Q (2018). Bile acid physiology. Annals of hepatology, 16, 4-14.
Ding, T., Xu, N., Liu, Y., Du, J., Xiang, X., Xu, D., Liu, Q., Yin, Z., Li, J., Mai, K., Ai, Q., 2020. Effect of dietary bile acid (BA) on the growth performance, body composition, antioxidant responses and expression of lipid metabolism-related genes of juvenile large yellow croaker (Larimichthys crocea) fed high-lipid diets. Aquaculture 518, 734768. DOI: 10.1016/j.aquaculture.2019.734768
Du, J., Xiang, X., Xu, D., Zhang, J., Fang, W., Xu, W., Mai, K., Ai, Q., 2021. FXR, a key regulator of lipid metabolism, is inhibited by ER stress-mediated activation of JNK and p38 MAPK in large yellow croakers (Larimichthys crocea) fed high fat diets. Nutrients 13(12), 4343. DOI: 10.3390/nu13124343
Du, J., Xu, H., Li, S., Cai, Z., Mai, K., Ai, Q., 2017. Effects of dietary chenodeoxycholic acid on growth performance, body composition and related gene expression in large yellow croaker (Larimichthys crocea) fed diets with high replacement of fish oil with soybean oil. Aquaculture 479, 584-590. DOI: 10.1016/j.aquaculture.2017.06.023
Einarsson, K., Ericsson, S., Ewerth, S., Reihner, E., Rudling, M., Ståhlberg, D., Angelin, B., 1991. Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism. European Journal of Clinical Pharmacology 40(Suppl 1), S53-S58. DOI: 10.1007/BF03216291
Fatou, N.F., 2019. Efficacy and tolerance evaluation of bile acids in diet of common carp. In: Thesis of master degree. Chinese Academy of Agriculture Science [Abstract Only].
Guo, J.L., Kuang, W.M., Zhong, Y.F., Zhou, Y.L., Chen, Y.J., Lin, S.M., 2020. Effects of supplemental dietary bile acids on growth, liver function and immunity of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Fish & Shellfish Immunology 97, 602-607. DOI: 10.1016/j.fsi.2019.12.087
Guo, Y.X., Dong, X.H., Tan, B.P., Chi, S.Y., Yang, Q.H., Chen, G., Zhang, L., 2011. Partial replacement of soybean meal by sesame meal in diets of juvenile Nile tilapia, Oreochromis niloticus L. Aquaculture Research 42(9), 1298-1307. DOI: 10,1111/j.1365-2109.2010.02718.x
Hofmann, A.F., Hagey, L.R., 2008. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cellular and Molecular Life Sciences 65, 2461-2483. DOI: 10.1007/s00018-008-7568-6
Hohenwallner, W., Stein, W., Hafkenscheid, J.C., Kruse- Jarres, J.D., Kaiser, C., Hubbuch, A., 1989. Reference ranges for alpha-amylase in serum and urine with 4,6- ethylidene- (G7)-1-4-nitrophenyl-(G1)- alpha, D- maltoheptaoside as substrate. Journal of Clinical Chemistry and Clinical Biochemistry 27, 97-101.
Houten, S.M., Watanabe, M., Auwerx, J., 2006. Endocrine functions of bile acids. The EMBO Journal 25(7), 1419-1425. DOI: 10,1038/sj.emboj.7601049
Huang, D., Wu, Y., Lin, Y., Chen, J., Karrow, N., Ren, X., Wang, Y., 2017. Dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. Journal of the World Aquaculture Society 48(5), 782-790. DOI: 10.1111/jwas.12417
Iwashita, Y., Suzuki, N., Yamamoto, T., Shibata, J.I., Isokawa, K., Soon, A.H., Ikehata, Y., Furuita, H., Sugita, T., Goto, T., 2008. Supplemental effect of cholyltaurine and soybean lecithin to a soybean meal-based fish meal-free diet on hepatic and intestinal morphology of rainbow trout Oncorhynchus mykiss. Fisheries Science 74, 1083-1095. DOI: 10.1111/j.1444-2906.2008.01628.x
Jiang, M., Wen, H., Gou, G.W., Liu, T.L., Lu, X., Deng, D.F., 2018. Preliminary study to evaluate the effects of dietary bile acids on growth performance and lipid metabolism of juvenile genetically improved farmed tilapia (Oreochromis niloticus) fed plant ingredient‐based diets. Aquaculture Nutrition 24(4), 1175-1183. DOI: 10.1111/anu.12656
Jiang, Y.D., Wang, J.T., Han, T., Li, X.Y., Hu, S.X., 2015. Effect of dietary lipid level on growth performance, feed utilization and body composition by juvenile red spotted grouper (Epinephelus akaara). Aquaculture International 23, 99-110. DOI: 10.1007/s10499-014-9801-7
Jin, M., Pan, T., Cheng, X., Zhu, T.T., Sun, P., Zhou, F., Ding, X., Zhou, Q., 2019. Effects of supplemental dietary L-carnitine and bile acids on growth performance, antioxidant and immune ability, histopathological changes and inflammatory response in juvenile black seabream (Acanthopagrus schlegelii) fed high-fat diet. Aquaculture, 504: 199-209. DOI: 10.1016/j.aquaculture.2019.01.063
Johnson, A. M., Rohlfs, E. M. and Silverman, L. M., 1999. Proteins. In: Burtis C. A., and Ashwood, E. R. (eds). Tietz Textbook of Clinical Chemistry 3rd. Philadelphia: W. B. Saunders Company. pp. 477-540.
Kikuchi, K., Furuta, T., Iwata, N., Onuki, K., Noguchi, T., 2009. Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer Takifugu rubripes. Aquaculture 298(1-2), 111-117. DOI: 10.1016/j.aquaculture.2009.10.026
Kortner, T.M., Penn, M.H., Bjӧrkhem, I., Måsøval, K., Krogdahl, Å., 2016. Bile components and lecithin supplemented to plant-based diets do not diminish diet related intestinal inflammation in Atlantic salmon. BMC veterinary Research 12, 1-12. DOI: 10.1186/s12917-016-0819-0
Kruse-Jarres, J.D., Kaiser, C., Hafkenscheid, J.C., Hohenwallner W., Stein, W., Bohner, J., 1989. Evaluation of a new alpha- amylase assay using 4,6-ethyliden (G7)-1-4- nitrophenyl-(G1)- alpha, D- maltoheptaoside as substrate. Journal of Clinical Chemistry and Clinical Biochemistry 27, 103-113.
Li, Y., Wang, S., Hu, Y., Cheng, J., Cheng, X., Cheng, P., Cui, Z., 2021. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (Cynoglossus semiliaevis). Fish & Shellfish Immunology 116, 52-60. DOI: 10.1016/j.fsi.2021.06.020
Lin, X, Xia, L, Zhou, Y, Xie, J, Tuo, Q, Lin, L , Liao, D (2025). Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. International Journal of Molecular Sciences, 26, 4240.
Liu, Y, Li, X, Lin, J, Song, K, Li, X, Wang, L, Zhang, C , Lu, K (2024). Effects of Dietary Supplementation of Bile Acids on Growth, Glucose Metabolism, and Intestinal Health of Spotted Seabass (Lateolabrax maculatus). Animals, 14, 1299.
Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., Mackie, A., 2011. The role of bile salts in digestion. Advances in Colloid and Interface Science 165(1), 36-46. DOI: 10,1016/j.cis.2010.12.002
National Research Council (NRC). 2011. Nutrient Requirements of Fish and Shrimp. Washington, DC: National Academy Press (2011).
Pasquier, B., Armand, M., Castelain, C., Guillon, F., Borel, P., Lafont, H., Lairon, D., 1996. Emulsification and lipolysis of triacylglycerols are altered by viscous soluble dietary fibres in acidic gastric medium in vitro. Biochemical Journal 314(1), 269-275. DOI: 10.1042/bj3140269
Peng, X.R., Feng, L., Jiang, W.D., Wu, P., Liu, Y., Jiang, J., Kuang, S.Y., Tang, L., Zhou, X.Q., 2019. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): enhancement the effect of protein-sparing by dietary lipid. Fish & Shellfish Immunology 92, 552-569. DOI: 10,1016/j.fsi.2019.06.047
Robic, S., Linscott, K.B., Aseem, M., Humphreys, E.A., McCartha, S.R., 2011. Bile acids as modulators of enzyme activity and stability. The Protein Journal 30, 539-545. DOI: 10.1007/s10930-011-9360-y
Romano, N., Kumar, V., Yang, G., Kajbaf, K., Rubio, M.B., Overturf, K., Brezas, A., Hardy, R., 2020. Bile acid metabolism in fish: disturbances caused by fishmeal alternatives and some mitigating effects from dietary bile inclusions. Reviews in Aquaculture 12(3), 1792-1817. DOI: 10.1111/raq.12410
Romarheim, O.H., Skrede, A., Gao, Y., Krogdahl, Å., Denstadli, V., Lilleeng, E., Storebakken, T., 2006. Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss). Aquaculture 256(1-4), 354-364. DOI: 10.1016/j.aquaculture.2006.02.006
Ruiz, A., Andree, K.B., Sanahuja, I., Holhorea, P.G., Calduch-Giner, J.À., Morais, S., Pastor, J.J., Pérez-Sánchez, J., Gisbert, E., 2023. Bile salt dietary supplementation promotes growth and reduces body adiposity in gilthead seabream (Sparus aurata). Aquaculture 566, 739203. DOI: 10.1016/j.aquaculture.2022.739203
Rungruangsak-Torrissen, K., Moss, R., Andresen, L. H., Berg, A., Waagbø, R., 2006. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish physiology and Biochemistry 32, 7-23. DOI: 10.1007/s10695-005-0630-5
Sagada, G., Chen, J., Shen, B., Huang, A., Sun, L., Jiang, J., Jin, C., 2017. Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus). Animal Nutrition 3(2), 156-163. DOI: 10.1016/j.aninu.2017.03.003
Sun, J.Z., Wang, J.Y., Ma, J.J., Li, B.S., Hao, T.T., Sun, Y.Z., Zhang, L.M., 2014. Effects of dietary bile acids on growth, body composition and lipid metabolism of juvenile turbot (Scophthalmus maximus) at different lipid levels. Oceanologia et Limnologia Sinica 45(3), 617-625.
Tang, T, Hu, Y, Peng, M, Chu, W, Hu, Y , Zhong, L (2019). Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 234, 34-40.
Thirstrup, K., Verger, R., Carriere, F., 1994. Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry 33(10), 2748-2756. DOI: 10.1021/bi00176a002
Thomas, L. (ed.), 1998. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results. TH-Books Verlagsgesellsschaft, Frankfurt/Main. pp. 241-247.
Tietz, N.W., Shuey, D.F., 1993. Lipase in serum-the elusive enzyme: an overview. Clinical Chemistry 39(5), 746-56.
Wang, J.T., Liu, Y.J., Tian, L.X., Mai, K.S., Du, Z.Y., Wang, Y., Yang, H.J., 2005. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249(1-4), 439-447. DOI: 10.1016/j.aquaculture.2005.04.038
Xie, C., Huang, W., Young, R.L., Jones, K.L., Horowitz, M., Rayner, C.K., Wu, T., 2021. Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease. Nutrients, 13, 1104.
Xu, J., Xie, S., Chi, S., Zhang, S., Cao, J. and Tan, B., 2022. Protective effects of taurocholic acid on excessive hepatic lipid accumulation via regulation of bile acid metabolism in grouper. Food & Function, 13(5), 3050-3062.
Yamamoto, T., Suzuki, N., Furuita, H., Sugita, T., Tanaka, N., Goto, T., 2007. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. Fisheries Science 73, 123-131. DOI: 10.1111/j.1444-2906.2007.01310.x
Yang, L., Liu, M., Zhao, M., Zhi, S., Zhang, W., Qu, L., Xiong, J., Yan, X., Qin, C., Nie, G., 2023. Dietary Bile Acid Supplementation Could Regulate the Glucose, Lipid Metabolism, and Microbiota of Common Carp (Cyprinus carpio L.) Fed with a High‐Lipid Diet. Aquaculture Nutrition, 2023, 9953927.
Yang, M., Gu, Y., Li, L., Liu, T., Song, X., Sun, Y., Cao, X., Wang, B., Jiang, K., Cao, H., 2021. Bile acid–gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients 13, 3143.
Yao, T., Gu, X., Liang, X., Fall, F.N., Cao, A., Zhang, S., Guan, Y., Sun, B., Xue, M., 2021. Tolerance assessment of dietary bile acids in common carp (Cyprinus carpio L.) fed a high plant protein diet. Aquaculture 543, 737012. DOI: 10,1016/j.aquaculture.2021.737012
Yin, P., Xie, S., Zhuang, Z., He, X., Tang, X., Tian, L., Liu, Y., Niu, J., 2021. Dietary supplementation of bile acid attenuates adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (Micropterus salmoides). Aquaculture 531, 735864. DOI: 10,1016/j.aquaculture.2020.735864
Yu, H., Zhang, L., Chen, P., Liang, X., Cao, A., Han, J., Wu, X., Zheng, Y., Qin, Y., Xue, M., 2019. Dietary bile acids enhance growth, and alleviate hepatic fibrosis induced by a high starch diet via AKT/FOXO1 and cAMP/AMPK/SREBP1 pathway in Micropterus salmoides. Frontiers in Physiology 10, 1430. DOI: 10,3389/fphys.2019.01430
Yuan, Y., Omar, A.A., Emam, W., Mohamed, R.A., 2025. Impact of dietary inclusion of bile acid and fat percent on growth, intestinal histomorphology, immune-physiological and transcriptomic responses of Nile tilapia (Oreochromis niloticus). Open Veterinary Journal, 15, 222.
Zeng, B.H., Liao, Z.Y., Xiang, X., He, W.X., Cen, M., He, S.C., 2017. Effects of bile acids on growth performance, muscle composition and digestive enzyme activities of Ctenopharyngodon idellus. Progress in Fishery Sciences 38(2), 99-106.
Zhang, Y., Feng, H., Liang, X.F., He, S., Lan, J., Li, L., 2022. Dietary bile acids reduce liver lipid deposition via activating farnesoid X receptor, and improve gut health by regulating gut microbiota in Chinese perch (Siniperca chuatsi). Fish & Shellfish Immunology 121, 265-275. DOI: 10.1016/j.fsi.2022.01.010
Zhou, J.S., Chen, H.J., Ji, H., Shi, X.C., Li, X.X., Chen, L.Q., Du, Z.Y., Yu, H.B., 2018. Effect of dietary bile acids on growth, body composition, lipid metabolism and microbiota in grass carp (Ctenopharyngodon idella). Aquaculture Nutrition 24(2), 802-813. DOI: 10.1111/anu.12609.