Role of Extraction methods on the purity and Sulfate content of Fucoidan in brown algae harvested from the Makran coasts in Iran

Document Type : Research Paper

Authors

Department of Fishery and Marine Sciences, Faculty of Natural Resources and Environment, Islamic Azad University, Tehran North Branch, Tehran, Iran.

10.22059/jfisheries.2025.397957.1463

Abstract

Fucoidan is a complex sulfate biopolymer and one of the active structural components found in the cell walls of brown algae. The unique structural features of fucoidan, especially the level of impurities and sulfate content, are used as determining factors in its potential activity and biological performance in the food and pharmaceutical industries. In the present study, fucoidans were extracted from the brown algae Padina australis, Nizimuddinia zanardinii, and Sargassum latifolium using various extraction methods, including water, dilute hydrochloric acid, and calcium chloride solution. The results indicated that the highest fucoidan content was obtained through acid extraction from Nizimuddinia zanardinii. Subsequently, protein impurities were assessed using the BCA method, uronic acid impurities through the carbazole method, and sulfate content via turbidimetry, utilizing gelatin and barium chloride reagents in the fucoidans extracted with water, acid, and salt from N. zanardinii. The analyses revealed that the fucoidan obtained through acid extraction produces the highest level of uronic acid impurities. Additionally, the acid-extracted fucoidan exhibited the lowest protein impurity content while achieving the highest sulfate content compared to samples extracted with water and salt. Given that the biomass of Sargassum latifolium and Padina australis is significantly higher along the southern coasts of the country than that of Nizimuddinia zanardinii, it is recommended that acid extraction be considered the optimal method, with Sargassum latifolium identified as a rich source of fucoidan with high sulfate content for human consumption and aquaculture applications.

Keywords

Main Subjects


Alavian, Z., Riahi, H., Musavi Nadushan, R., Reeisi, B., Fatemi, S.M.R., 2018. Evaluation of ecological status of the Persian Gulf inshore waters (Hormozgan rocky bottoms) using macrophytic communities and a macroalgae biological index, EEI. Iranian Journal of Fisheries Sciences, 17(1), 228-238. DOI: 10.22092/ijfs.2018.115619
Bilan, M.I., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., Usov, A.I., 2006. Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydrate Research, 341(2), 238-245. DOI: 10.1016/j.carres.2005.11.009
Dodgson, K.S., Price, R.G., 1962. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochemical Journal, 84(1), 106. DOI: 10.1042/bj0840106
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry28(3), 350-356.
Du, B., Zhao, Q., Cheng, C., Wang, H., Liu, Y., Zhu, F., Yang, Y., 2022. A critical review on extraction, characteristics, physicochemical activities, potential health benefits, and industrial applications of fucoidan.  eFood, 3(4), e19.   DOI: 10.1002/efd2.19
Graikini, D., Soro, A.B., Sivagnanam, S.P., Tiwari, B.K., Sánchez, L., 2023. Bioactivity of fucoidan-rich extracts from Fucus vesiculosus against rotavirus and foodborne pathogens. Marine Drugs, 21(9), 478. DOI: 10.3390/md21090478
Husni, A., Izmi, N., Ayunani, F.Z., Kartini, A., Husnayain, N. & Isnansetyo, A., 2022. Characteristics and antioxidant activity of fucoidan from Sargassum hystrix: Effect of extraction method. International Journal of Food Science2022(1), 3689724. DOI: 10.1155/2022/3689724
January, G.G., Naidoo, R.K., Kirby-McCullough, B., Bauer, R., 2019. Assessing methodologies for fucoidan extraction from South African brown algae. Algal Research, 40, 101517. DOI: 10.1016/j.algal.2019.101517
Jayawardena, T.U., Nagahawatta, D.P., Fernando, I.P.S., Kim, Y.T., Kim, J.S., Kim, W.S., Jeon, Y.J., 2022. A review on fucoidan structure, extraction techniques, and its role as an immunomodulatory agent. Marine Drugs, 20(12), 755. DOI: 10.3390/md20120755
Jing, X., Sun, Y., Ma, X., Hu, H., 2021. Marine polysaccharides: Green and recyclable resources as wound dressings. Materials Chemistry Frontiers, 5(15), 5595-5616. DOI: 10.1016/j.ijbiomac.2023.127331
Lee, S.H., Ko, C.I., Ahn, G., You, S., Kim, J.S., Heu, M.S., Kim, J., Jee, Y., Jeon, Y.J., 2012. Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydrate Polymers, 89(2), 599-606. DOI: 10.1016/j.carbpol.2012.03.056
Liu, J., Wu, S.Y., Chen, L., Li, Q. J., Shen, Y. Z., Jin, L., Tong, H.B., 2020. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans. International Journal of Biological Macromolecules, 155, 1385-1392. DOI: 10.1016/j.ijbiomac.2019.11.113
Mousavi Nadushan, R., & Hellat, R. 2019. Production of iron-chelating proteinous hydrolysate from freshwater prawn, Macrobrachium nipponenseIranian Scientific Fisheries Journal28(1), 9-18. DOI: 10.22092/ISFJ.2019.118537
Mousavi Nadushan, R., Hosseinzade, I., 2020. Optimization of production and antioxidant activity of fucoxanthin from marine haptophyte algae, Isochrysis galbana. Iranian Journal of Fisheries Sciences, 19(6), 2901-2908. DOI: 10.22092/ijfs.2020.122837
Nagahawatta, D.P., Liyanage, N.M., Jayawardena, T.U., Yang, F., Jayawardena, H.H.A.C.K., Kurera, M.J.M.S., Jeon, Y.J., 2023. Functions and values of sulfated polysaccharides from seaweed. Algae, 38(4), 217-240. DOI: 10.4490/algae.2023.38.12.1
Oliveira, C., Ferreira, A.S., Novoa‐Carballal, R., Nunes, C., Pashkuleva, I., Neves, N.M., Silva, T.H., 2017. The key role of sulfation and branching on fucoidan antitumor activity. Macromolecular Bioscience, 17(5), 1600340. DOI: 10.1002/mabi.201600340
Ptak, S.H., Hjuler, A.L., Ditlevsen, S.I., Fretté, X., Errico, M., Christensen, K.V., 2021. The effect of seasonality and geographic location on sulphated polysaccharides from brown algae. Aquaculture Research, 52(12), 6235-6243. DOI: 10.1111/are.15485
Rani, V., Shakila, R.J., Jawahar, P., Srinivasan, A., 2017. Influence of species, geographic location, seasonal variation and extraction method on the fucoidan yield of the brown seaweeds of Gulf of Mannar, India. Indian Journal of Pharmaceutical Sciences, 79, 65-71. DOI: 10.4172/pharmaceutical-sciences.1000202
Roohi-Shalmaee, N., Mousavi-Nadushan, R., Mostafavi, P.G., Shahbazzadeh, D., Pooshang Bagheri, K., 2020. Ecological adaptation of the Persian Gulf polychaete in a polluted area: proteomics concerning dominant defensive biomarkers. International Journal of Environmental Science and Technology, 17(4), 1937-1946. DOI: 10.1007/s13762-019-02508-y
Saeed, M., Arain, M.A., Ali Fazlani, S., Marghazani, I.B., Umar, M., Soomro, J., Bhutto, Z.A., Soomro, F., Noreldin, A.E., Abd El‐Hack, M.E., Elnesr, S.S., 2021. A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms. Aquaculture Nutrition, 27(3), 633-654. DOI: 10.1111/anu.13233
Senthil, S.L., 2024. A comprehensive review to assess the potential, health benefits and complications of fucoidan for developing as functional ingredient and nutraceutical. International Journal of Biological Macromolecules, 134226. DOI: 10.1016/j.ijbiomac.2024.134226
Shen, P., Yin, Z., Qu, G., Wang, C., 2018. Fucoidan and its health benefits. In Bioactive seaweeds for food applications (pp. 223-238). Academic Press. 10.1016/B978-0-12-813312-5.00011-X
Tanna, B., Mishra, A., 2019. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Comprehensive Reviews in Food Science and Food Safety, 18(3), 817-831. DOI: 10.1111/1541-4337.12441
Trang, V.T.D., Mikkelsen, M.D., Vuillemin, M., Meier, S., Cao, H.T.T., Muschiol, J., Perna, V., Nguyen, T.T., Tran, V.H.N., Holck, J. and Van, T.T.T., 2022. The endo-α (1, 4) specific fucoidanase Fhf2 from Formosa haliotis releases highly sulfated fucoidan oligosaccharides. Frontiers in Plant Science, 13, 823668. 10.3389/fpls.2022.823668
Van Weelden, G., Bobiński, M., Okła, K., Van Weelden, W.J., Romano, A., Pijnenborg, J.M., 2019. Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine Drugs, 17(1), 32. DOI: 10.3390/md17010032
Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H., Song, S., 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Marine Drugs, 17(3), 183. DOI: 10.3390/md17030183
Yu, J., Li, Q., Wu, J., Yang, X., Yang, S., Zhu, W., Lu, J., 2021. Fucoidan extracted from sporophyll of Undaria pinnatifida grown in Weihai, China–chemical composition and comparison of antioxidant activity of different molecular weight fractions. Frontiers in Nutrition, 8, 636930. DOI: 10.3389/fnut.2021.636930
Zayed, A., El-Aasr, M., Ibrahim, A.R.S., Ulber, R., 2020. Fucoidan characterization: Determination of purity and physicochemical and chemical properties. Marine Drugs, 18(11), 571. DOI: 10.3390/md18110571