Activity of enzymes related to protein, lipid, digestive and antioxidant enzymes in Common carp fed with mineral supplements under biofloc system

Document Type : Research Paper

Authors

Department of Fisheries, Ahv. C., Islamic Azad University, Ahvaz, Iran.

10.22059/jfisheries.2025.400182.1465

Abstract

This study evaluated the effect of mineral-enriched biofloc technology on the activities of enzymes related to protein, lipid, digestive and antioxidant enzymes of common carp (Cyprinus carpio L.) over a 60-day period. Four biofloc treatments with different concentrations of mineral supplements of 10 g/L (MTB10), 15 g/L (MTB15), 20 g/L (MTB20) and 25 g/L (MTB25) were added to the carp diet. In contrast, two control groups of conventional rearing system (C) and a standard biofloc control (BC) without mineral supplements were included. Water quality indices were examined throughout the study. The water quality indices except alkalinity and pH which fluctuated in the study treatments were at optimum levels and higher turbidity was observed only in the mineral-supplemented MTB25 treatment. The supplemented groups had lower levels of nitrite and nitrate than the standard biofloc system. Floc indices such as total suspended solids (TSS) were lower than the control treatment and total dissolved solids (TDS) were higher than the control treatment. The crude fat and fish ash contents tended to increase in biofloc treatments. The highest protein content was observed in MTB15 treatment at 17.45% (P<0.05). MTB15 treatment was able to improve protein metabolism, lipid metabolism and antioxidant enzyme activity. The activities of lipase, protease and amylase enzymes were in the range of 5.13-6.29 U/g, 89-134 pg/mg and 0.25-0.37 U/mg. The results of this study highlighted the effectiveness of the biofloc system containing mineral supplements in increasing metabolism and water quality of common carp culture.

Keywords

Main Subjects


Abdel-Rahim, M.M., Elhetawy, A.I.G., Shawky, W.A., El-Zaeem, S.Y., El-Dahhar, A.A., 2024. Enhancing Florida red tilapia aquaculture: biofloc optimization improves water quality, pathogen bacterial control, fish health, immune response, and organ histopathology across varied groundwater salinities. Veterinary Research Communications 48(1), 2989-3006. DOI: org/10.1007/s11259-024-10433-w
Abiri, S.A., Chitsaz, H., Najdegerami, E.H., Akrami, R., Jalali, A.S., 2022. Influence of wheat and rice bran fermentation on water quality, growth performance, and health status of common carp (Cyprinus carpio L.) juveniles in a biofloc-based system. Aquaculture 555(2), 738168. DOI: 10.1016/j.aquaculture.2022.738168
Adineh, H., Naderi, M., Khademi Hamidi, M., Harsij, M., 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology 95(4), 440-448. DOI: org/10.1016/j.fsi.2019.10.057
Anand, H., Mir, R., Saxena, R., 2009. Hemoglobin color scale a diagnostic dilemma. Indian Journal of Pathology & Microbiology 52(2), 360-2. DOI: 10.4103/0377-4929.54994
AOAC, 2005. Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists; Arlington, VA, USA.
APHA., 1926. American Public Health Association, Standard methods for the examination of water and wastewater. American Public Health Association.
Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176(3), 227-235. DOI: org/10.1016/S0044-8486 (99) 00085-X
Behera, S., Das, P.C., Felix, N., Ferosekhan, S., Swain, H.S., Kumari, R., Athithan, S., Padmavathy, P., 2025. Effect of different carbon supplements on growth performance and digestive enzyme activities of butter catfish (Ompok bimaculatus Bloch, 1794) in biofloc system.  Aquaculture 603(1), 742384. DOI: org/10.1016/j.aquaculture.2025.742384
Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8), 911-917. DOI: 31.171.101.221
Cherry, I.S., Crandall Jr, L.A., 1932. The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. American Journal of Physiology-Legacy Content 100(2), 266-273. DOI: org/10.1152/ajplegacy.1932.100.2.266
 
Chen, J., Ren, Y., Wang, G., Xia, B., Li, Y., 2018b. Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & Shellfish Immunology 72, 143-152. DOI: org/10.1016/j.fsi.2017.10.061
Crab, R., Chielens, B., Wille, M., Bossier, P., Verstraete, W., 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research 41(4), 559-567. DOI: org/10.1111/j.1365-2109.2009.02353.x
da Rocha, A.F., Barbosa, V.M., Wasielesky Jr, W., Abreu, P.C., Lisboa, V., Cavalli, L., Tesser, M.B., 2022. Water quality and juvenile development of mullet Mugil liza in a biofloc system with an additional carbon source: Dextrose, liquid molasses or rice bran? Aquaculture Research 53 (3), 870-883. DOI: org/10.1111/are.15628
Dauda, A.B., 2020. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture 12 (2), 1193–1210. DOI: org/10.1111/ raq.12379
Dawood, M.A., Eweedah, N.M., Moustafa, E.M., El-Sharawy, M.E., Soliman, A.A., Amer, A.A., Atia, M.H., 2020. Copper nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biological Trace Element Research 198, 283-292. DOI: 10.1007/s12011-020-02068-0
Debnath, S., Parvez, M.S., Sadia, S., Hossain, K.M.R., Ashan, M.N., 2025. Effect of dietary protein levels on growth, body composition, and haematology of tilapia in biofloc without solid management system. Aquaculture, Fish and Fisheries 5, e70046. DOI: https://doi.org/10.1002/aff2.70046
Drapeau, G.R., 1976. Protease from Staphylococcus aureus. In: Methods in Enzymology 45. Academic press, pp. 469-475.
Ekasari, J., Setiawati, R., Ritonga, F.R., Setiawati, M., Suprayudi, M.A., 2019. Growth and health performance of African catfish Clarias gariepinus (Burchell 1822) juvenile fed with graded levels of biofloc meal. Aquaculture Research 50, 1802–1811. DOI: org/10.1111/are.14059
Elhetawy, A.I., Lotfy, A.M., Attallah, M.A., Shahin, S.A., Soliman, A.A., Abdel-Rahim, M.M., 2024. Interactive impacts of rosemary oil and amylase-lipase enzymes on Liza ramada performance, ammonia excretion, digestion, serum biochemistry and intestinal histomorphology. Egyptian Aquatic Research 50, 154–161. DOI: org/10.1016/j.ejar.2023.12.003
Epstein, E., Bloom, A.J., 1853. Mineral nutrition of plants: principles and perspectives. Sinauer.
Furtado, P.S., Poersch, L.H., Wasielesky, W., 2015. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquaculture International 23, 345-358. DOI: 10.1007/s10499-014-9819-x
Ghafarifarsani, H., Hoseinifar, S.H., Javahery, S., Yazici, M., Van Doan, H., 2021. Growth performance, biochemical parameters, and digestive enzymes in common carp (Cyprinus carpio) fed experimental diets supplemented with vitamin C, thyme essential oil, and quercetin. Italian Journal of Animal Science 21, 291–302. DOI: org/10.1080/1828051X.2021.1965923
Gou, J., Hong, C.U., Deng, M., Chen, J., Hou, J., Li, D., He, X., 2019. Effect of carbon to nitrogen ratio on water quality and community structure evolution in suspended growth bioreactors through biofloc technology. Water 11(8), 1640. DOI: org/10.3390/w11081640
Hargreaves, J.A., 2013. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center 4503: 1-12.
He, L., Shi, X., Zeng, X., Zhou, F., Lan, T., Chen, M., Han, K., 2022. Characterization of the glucocorticoid receptor of large yellow croaker (Larimichthys crocea) and its expression in response to salinity and immune stressors. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 265, 111124. DOI: https://doi.org/10.1016/j.cbpa.2021.111124
Huang, Z., Li, L., Zhu, R., Li, M., Duan, J., Wang, J.Y., Wu, L.F., 2020. Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquaculture Reports 16, 100283. DOI: doi.org/10.1016/j.aqrep.2020.100283
 
Jafarzadeh, F., Roomiani, L., Chelemal Dezfulnezhad, M., Javaheri Baboli, M., Askary Sary, A., 2024. Harnessing paraprobiotics and postbiotics for enhanced immune function in Asian seabass (Lates calcarifer): Insights into pattern recognition receptor signaling. Aquaculture 151, 109725. DOI: 10.1016/j.fsi.2024.109725
Khanjani, M.H., Sharifinia, M., 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture 12 (3), 1836-1850. DOI: org/10.1111/ r
Khanjani, M.H., Alizadeh, M., Sharifinia, M., 2021. Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquaculture International 29(1), 307–321. DOI: 10.1007/s10499-020-00627-9
Kjeldahl, J., 1883. A new method for the determination of nitrogen in organic matter. Analytic Chemistry 22, 366–382. DOI: org/10.1007/BF01338151
Lee, C., Kim, S., Lim, S., Lee, K., 2017. Supplemental effects of biofloc powder on growth performance, innate immunity, and disease resistance of Pacific white shrimp Litopenaeus vannamei. Fisheries and Aquatic Science 20, 1-7. DOI: 10.1186/s41240-017-0059-7
Li, W., Xu, W., Parise, J.B., Phillips, B.L., 2012. Formation of hydroxylapatite from cosorption of phosphate and calcium by boehmite. Geochimica et Cosmochimica Acta 85, 289-301. DOI: 10.1016/j.gca.2012.02.021
Long, L., Yang, J., Li, Y., Guan, C., Wu, F., 2016. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448, 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
Luo, G., Liang, W., Tan, H., Yao, C., Zhang, N., Lu, L., 2013. Effects of calcium and magnesium addition on the start-up of sequencing batch reactor using biofloc technology treating solid aquaculture waste. Aquaculture Engineering 57, 32-37. DOI: 10.1016/j.aquaeng.2013.06
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., Tan, H., 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 422, 1-7. DOI: 10.1016/j. aquaculture.2013.11.023
Mahanand, S.S., Moulick, S., Srinivasa, R.P., 2013a. Optimum formulation of feed for rohu, Labeo rohita (Hamilton), with biofloc as a component. Aquaculture International 21, 347-60. DOI: 10.1007/s10499-012-9557-x.
Mahanand, S.S., Moulick, S., Rao, P.S., 2013b. Water quality and growth of Rohu, Labeo rohita, in a biofloc system. Applied Aquaculture 25(2), 121-131. DOI: 10.1080/10454438.2013.788898.
Manduca, L.G., da Silva, M.A., de Alvarenga, E.R., de Oliveira Alvesa, G.F., de Araújo Fernandes, A.F., Assumpção, A.F., Cardoso, C.C., de Sales, S.C.M., de Alencar Teixeira, E., de Almeida e Silva, M., Turraa, E.M., 2020. Effects of a zero exchange biofloc system on the growth performance and health of Nile tilapia at different stocking densities. Aquaculture 521, 735064. DOI: 10.1016/j.aquaculture.2020.735064
Martins, G.B., Tarouco, F., Rosa, C.E., Robaldo, R.B., 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture 468, 10-17. DOI: 10.1016/j.aquaculture.2016.09.046.
Minabi, K., Sourinejad, I., Alizadeh, M., Ghatrami, E.R., Khanjani, M.H., 2020. Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquaculture International 28, 1883-1898. DOI: 10.1007/s10499-020-00564-7
Mohammady, E.Y., Soaudy, M.R., Ali, M.M., El-ashry, M.A., Abd El-Karim, M.S., Jarmołowicz, S., Hassaan, M.S., 2023. Response of Nile tilapia under biofloc system to floating or sinking feed and feeding rates: Water quality, plankton community, growth, intestinal enzymes, serum biochemical and antioxidant status. Aquaculture Reports 29, 101489. DOI: 10.1016/j.aqrep.2023.101489
Mugwanya, M., Dawood, M.A., Kimera, F., Sewilam, H., 2021. Biofloc systems for sustainable production of economically important aquatic species: a review. Sustainability 13(13), 7255. DOI: 10.3390/su13137255
Musharraf, M., Khan, M.A., 2021. Dietary manganese requirement of fingerling Indian major carp, Labeo rohita (Hamilton) estimated by growth, tissue manganese concentration and hepatic manganese-superoxide dismutase activity. Aquaculture 540, 736734.
Najdegerami, E.H., Bakhshi, F., Lakani, F.B., 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish physiology and biochemistry 42, 457-465. DOI: 10.1007/s10695-015-0151-9
Pekkoh, J., Chaichana, C., Thurakit, T., Phinyo, K., Lomakool, S., Ruangrit, K., Srinuanpan, S., 2022. Dual-bioaugmentation strategy to enhance the formation of algal-bacteria symbiosis biofloc in aquaculture wastewater supplemented with agricultural wastes as an alternative nutrient sources and biomass support materials. Bioresource Technology 359, 127469. DOI: 10.1016/j.biortech.2022.127469
Rai, N., Julka, J.M., Panigrahi, A., Das, S.P., 2025. Synergistic carbon source utilization in biofloc aquaculture of common carp (Cyprinus carpio): impacts on growth, health, and environmental parameters. Frontiers in Marine Science 12, 1576079. DOI: 10.3389/fmars.2025.1576079
Rick, W., Stegbauer, H.P., 1974. α- amylase measurement of reducing groups. In: Methods of Enzymatic Analysis 2, 885-890. DOI: org/10.1016/b978-0-12-0
Rosas, V., Dias, A.B., Moura, P., Al-Khayat, J.A., Tesser, M.B., Foes, G.K., Wasielesky, W., 2025. Inclusion of biofloc meal as a mineral source in diets for Penaeus vannamei cultured in oligohaline water. Aquaculture Reports 44, 103062. DOI: 10.1016/j.aqrep.2025.103062
Saha, J., Hossain, M.A., Mamun, M.A., Islam, M.R., Alam, M.S., 2022. Effects of carbon-nitrogen ratio manipulation on the growth performance, body composition and immunity of stinging catfish Heteropneustes fossilis in a biofloc-based culture system. Aquaculture Reports 25, 101274. DOI: 10.1016/j.aqrep.2022.101274
Sallam, G.R., El Basuini, M.F., Fahmy, A.F., Al‑Absawey, M.A., Habib, Y.J., Mustafa, R.A., Fayed, W.M., El‑Sayed, A.F.M., Shehata, A.I., 2025. Salinity‑dependent effects of integrated biofloc technology on reproductive performance, biological responses, and offspring quality in red tilapia aquaculture. Aquaculture International 33, 135. DOI: 10.1007/s10499-024-01804-w
Saseendran, S., Dube, K., Chandrakant, M.H., Rani, A.B., 2021. Enhanced growth response and stress mitigation of genetically improved farmed Tilapia in a biofloc integrated aquaponic system with bell pepper. Aquaculture 533, 736200. DOI: 10.1016/j.aquaculture.2020.736200.
Shearer, K.D., 1995. The use of factorial modeling to determine the dietary requirements for essential elements in fishes. Aquaculture 133 (1), 57–72. DOI: 10.1016/0044-8486(94)0040
Sheikh, M.S., Maguire, J.A., Emmett, M., Santa Ana, C.A., Nicar, M.J., Schiller, L.R., Fordtran, J.S., 1989. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. Clinical Investigation 83 (1), 66-73. DOI: 10.1172/JCI113886
Sriyasak, P., Chitmanat, C., Whangchai, N., Promya, J., Lebel, L., 2015. Effect of water de-stratification on dissolved oxygen and ammonia in tilapia ponds in Northern Thailand. International Aquatic Research 7, 287–299. DOI: 10.1007/s40071-015-0113-y
Tacon, A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S., Forster, I.P., Decamp, O.E., 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition 8 (2), 121-137. DOI: 10.1046/j.1365-2095.2002.00199.x
Taherpour, M., Roomiani, L., Rajabi Islami, H., Shamsaie Mehrgan, M., 2023. Effect of dietary butyric acid, Bacillus licheniformis ‎ (probiotic), and their combination on hemato-biochemical indices, antioxidant enzymes, immunological parameters, and growth performance of Rainbow trout (Oncorhynchus mykiss). Aquaculture Reports 30(1), 101534. DOI: 10.1016/j.aqrep.2023.101534
Thomas, R.M., Verma, A.K., Prakash, C., Krishna, H., Prakash, S., Kumar, A., 2019. Utilization of Inland saline underground water for bio-integration of Nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea). Agricultural Water Management 222, 154-160. DOI: 10.1016/j.agwat.2019.06.001.
V, S., Krishnan, S., Kumar, P., Sukhdhane, K., Kala, A.S., Rani, A.M.B., 2024. Mineral supplementation in biofloc influences growth and haemato-biochemical indices of genetically improved farmed tilapia reared in inland saline ground water. Aquacultural Engineering 104, 102386. DOI: 10.1016/j.aquaeng.2023.102386
Wei, X.F.,   Meng, S., Wang, Y.T., Li, L., Zhu, R., Li, D.L., Liu, S.Y., Wu, L.F., 2024. Effects of replacing fish meal with biofloc meal on growth performance, nutrients metabolism, immune response and intestinal microbiota of common carp (Cyprinus carpio). Aquaculture 591, 741124. DOI: 10.1016/j.aquaculture.2024.741124
West, X.Z., Malinin, N.L., Merkulova, A.A., Tischenko, M., Kerr, B.A., Borden, E.C., Podrez, E.A., Salomon, R.G., Byzova, T.V., 2010. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972-976. DOI: 10.1038/nature09421.
Wooten, I.D.P., 1964. Microanalysis. In: Churchill, J. (Ed.), Medical Biochemistry, 4th edn. Churchill, London, pp. 101–107.
Xu, W.J., Pan, L.Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 356–357, 147–152. DOI: 10.1016/j.aquaculture.2012.05.022
Xu, W.J., Morris, T.C., Samocha, T.M., 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc based, high-density, zero-exchange, outdoor tank system. Aquaculture 453, 169-175. DOI: 10.1016/j.aquaculture.2015.11.021
Yadav, N.K., Paul, S., Patel, A.B., Mahanand, S.S., Biswas, P., Choudhury, T.G., Baidya, S., Meena, D.K., 2025. The role of biofloc technology in sustainable aquaculture: nutritional insights and system efficiency. Blue Biotechnology 2 (7). DOI: 10.1186/s44315-025-00025-x.
Yu, Z., Li, L., Zhu, R., Li, M., Duan, J., Wang, J.Y., Liu, Y.H., Wu, L.F. 2020. Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquaculture Reports 16(3), 100283. DOI: 10.1016/j.aqrep.2020.100283
Zablon, W.O., Ogello, E.O., Omondi, R., 2022. Biofloc system improves protein utilization efficiency and growth performance of Nile tilapia, Oreochromis niloticus fry: Experimental evidence. Aquaculture. Fish & Fisheries 2, 94-103. DOI: 10.1002/aff2.32