Alonso, S., Carmen Castro, M., Berdasco, M., de la Banda, I. G., Moreno-Ventas, X., de Rojas, A.H., 2019. Isolation and partial characterization of lactic acid bacteria from the gut microbiota of marine fishes for potential application as probiotics in aquaculture. Probiotics and Antimicrobial Proteins 11(2), 569-579. DOI: 10.1007/S12602-018-9439-2
Austin, B., Austin, D.A., 1993. Bacterial Fish Pathogens: Diseases in Farmed and Wild Fish. Ellis-Horwood Ltd., Chichester, UK, pp. 112-117.
Bairagi, A., Sarkar Ghosh, K., Sen, S.K., Ray, A.K., 2004. Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquaculture Research 35(5), 436–446. DOI: 10.1111/j.1365-2109.2004.01028.x
Carnevali, O., Zamponi, M.C., Sulpizio, R., Rollo, A., Nardi, M., Orpianesi, C., Cresci, A., 2004. Administration of probiotic strain to improve sea bream wellness during development. Aquaculture International 12, 377-386. DOI: 10.1023/B:AQUI.0000042141.85977.bb
Dai, W., Dong, Y., Ye, J., Xue, Q., Lin, Z., 2022. Gut microbiome composition likely affects the growth of razor clam Sinonovacula constricta. Aquaculture 550, 737847. DOI: 10.1016/j.aquaculture.2021.737847
Del'Duca, A., Cesar, D. E., Diniz, C.G., Abreu, P.C. 2013. Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture 388, 115-121. DOI: 10.1016/j.aquaculture.2013.01.019
El-Bab, A.F.F., Saghir, S.A., El-Naser, I.A.A., El-Kheir, S.M.A., Abdel-Kader, M.F., Alruhaimi, R.S., El-Raghi, A.A., 2022. The effect of dietary Saccharomyces cerevisiae on growth performance, oxidative status, and immune response of sea bream (Sparus aurata). Life 12(7), 1013. DOI: 10.3390/life12071013
Errington, J., van der Aart, L.T., 2020. Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. Microbiology 166(5), 425-427. DOI: 10.1099/mic.0.000922
Fuller, R., 1992. History and development of probiotics. Probiotics: The Scientific Basis 1, 1-8. DOI: 10.1007/978-94-011-2364-8_1
Ghosh, K., Sen, S., Ray, A., 2002. Growth and survival of rohu, Labeo rohita (Hamilton, 1822) spawn feed diets fermented with intestinal bacterium, Bacillus circulans. Acta Ichthyologica et Piscatoria 32(2), 83-92.
Jafaryan, H., Soltani, M., Taati, M., Nazarpour, A., Morovat, R., 2011. The comparison of performance of isolated sturgeon gut Bacillus (Acipenser persicus and Huso huso) with commercial microbial products on growth and survival of rainbow trout (Oncorhynchus mykiss) larvae. Journal of Veterinary Research 66(1), 39–84. (In Persian)
Kavitha, M., Raja, M., & Perumal, P., 2018. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquaculture Reports 11, 59-69. DOI: 10.1016/j.aqrep.2018.07.001
Korzybski, T., Kowszyk-Gindifer, Z., Kurylowicz, W., 1978. Antibiotics isolated from the genus Bacillus (Bacillaceae). Antibiotic-origin, nature and properties. American Society for Microbiology, Washington, DC 3, 1529-1661.
Kuebutornye, F. K., Lu, Y., Abarike, E. D., Wang, Z., Li, Y., Sakyi, M.E., 2020). In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of Nile tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins 12(2), 412-424. DOI: 10.1007/s12602-019-09562-5
Kumar, R., Mukherjee, S.C., Prasad, K.P., Pal, A.K., 2006. Evaluation of Bacillus subtilis as a probiotic to Indian major carp Labeo rohita (Ham.). Aquaculture Research 37(12), 1215–1221. DOI: 10.1111/j.1365-2109.2006.01551.x
Logan, N.A., Vos, P.D., 2015. Bacillus. In: Bergey’s Manual of Systematics of Archaea and Bacteria, 1–163. DOI: 10.1002/9781118960608.gbm00530
Lorgen-Ritchie, M., Uren Webster, T., McMurtrie, J., Bass, D., Tyler, C.R., Rowley, A., Martin, S.A., 2023. Microbiomes in the context of developing sustainable intensified aquaculture. Frontiers in Microbiology 14, 1200997. DOI: 10.3389/fmicb.2023.1200997
Luhur, J., Chan, H., Kachappilly, B., Mohamed, A., Morlot, C., Awad, M., Rodrigues, C.D., 2020. A dynamic, ring-forming MucB/RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genetics 16(12), e1009246. DOI: 10.1371/journal.pgen.1009246
Makridis, P., Bergh, Ø., Skjermo, J., Vadstein, O., 2001. Addition of bacteria bioencapsulated in Artemia metanauplii to a rearing system for halibut larvae. Aquaculture International 9, 225-235. DOI: 10.1023/A:1016815929846
Merrifield, D. L., & Carnevali, O. (2014). Probiotic modulation of the gut microbiota of fish. Aquaculture Nutrition: Gut health, probiotics and prebiotics, 185-222. DOI: 10.1002/9781118897263.ch8
Milijasevic, M., Veskovic-Moracanin, S., Milijasevic, J.B., Petrovic, J., Nastasijevic, I., 2024. Antimicrobial resistance in aquaculture: risk mitigation within the One Health context. Foods 13(15), 2448. DOI: 10.3390/foods13152448
Murray, P.R., Rosenthal, K.S., Pfaller, M.A., 2015. Medical Microbiology E-Book. Elsevier Health Sciences.
Muthukumar, P., Kandeepan, C., 2015. Isolation, identification and characterization of probiotic organisms from intestine of fresh water fishes. International Journal of Current Microbiology and Applied Sciences 4(3), 2319-7706.
Niu, S., Zhang, K., Li, Z., Xie, J., Wang, G., Li, H., Gong, W., 2023. Analysis of the structure and function of microbial community in late-stage of grass carp (Ctenopharyngodon idella) farming ponds. Aquaculture Reports 30, 101556. DOI: 10.1016/j.aqrep.2023.101556
Padeniya, U.M., Davis, D.A., Wells, D.E., Harrison, C.E., LaFrentz, B. R., Beck, B.H., Roy, L.A., Farmer, M., Bruce, T.J., 2025. Influence of dietary fermented yeast products (Saccharomyces cerevisiae) on performance, health and microbiome of Nile tilapia (Oreochromis niloticus) and the influence of discharge water in the production of romaine lettuce (Lactuca sativa). Animal Feed Science and Technology 325, 116348. DOI: 10.1016/j.anifeedsci.2025.116348
Pepi, M., Focardi, S., 2021. Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. International Journal of Environmental Research and Public Health 18(11), 5723. DOI: 10.3390/ijerph18115723
Perry, W.B., Lindsay, E., Payne, C.J., Brodie, C., Kazlauskaite, R., 2020. The role of the gut microbiome in sustainable teleost aquaculture. Proceedings of the Royal Society B 287(1926), 20200184. DOI: 10.1098/rspb.2020.0184
Rad, F., Köksal, G., Kindir, M., 2003. Growth performance and food conversion ratio of Siberian sturgeon (Acipenser baeri Brandt) at different daily feeding rates. Turkish Journal of Veterinary & Animal Sciences 27(5), 1085-1090.
Rajeev, R., Adithya, K.K., Kiran, G.S., Selvin, J., 2021. Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture 13(1), 238-258. DOI: 10.1111/raq.12471
Rawling, M., Schiavone, M., Apper, E., Merrifield, D.L., Castex, M., Leclercq, E., Foey, A., 2023. Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish (Danio rerio). Frontiers in Immunology 14, 1158390. DOI: 10.3389/fimmu.2023.1158390
Reda, R. M., Selim, K. M., El-Sayed, H.M., El-Hady, M.A., 2018. In vitro selection and identification of potential probiotics isolated from the gastrointestinal tract of Nile tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins 10(4), 692-703. DOI: 10.1007/s12602-017-9314-6
Rengpipat, S., Phianphak, W., Piyatiratitivorakul, S., Menasveta, P., 1998. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 167(3–4), 301-313. DOI: 10.1016/S0044-8486(98)00305-6
Ringø, E., Birkbeck, T.H., 1999. Intestinal microflora of fish larvae and fry. Aquaculture Research 30(2), 73-93.
Schar, D., Zhao, C., Wang, Y., Larsson, D.J., Gilbert, M., Van Boeckel, T.P., 2021. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nature Communications 12(1), 5384. DOI: 10.1038/s41467-021-25655-8
Sharmila, R., Abraham, T.J., Sundararaj, V., 1996. Bacterial flora of semi-intensive pond-reared Penaeus indicus (H. Milne Edwards) and the environment. Journal of Aquaculture in the Tropics 11, 193-203.
Sugita, H., 1981. Bacterial flora of coastal bivalves. Nippon Suisan Gakkaishi 47, 655-661.
Sugita, H., Hirose, Y., Matsuo, N., Deguchi, Y., 1998. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. Aquaculture 165(3–4), 269-280. DOI: 10.1016/S0044-8486(98)00267-1
Thankappan, B., Ramesh, D., Ramkumar, S., Natarajaseenivasan, K., Anbarasu, K., 2015. Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita—towards to identify novel probiotics against fish pathogens. Applied Biochemistry and Biotechnology 175(1), 340-353. DOI: 10.1007/s12010-014-1270-y
Torres-Maravilla, E., Parra, M., Maisey, K., Vargas, R.A., Cabezas-Cruz, A., Gonzalez, A., Tello, M., Bermúdez-Humarán, L.G., 2024. Importance of probiotics in fish aquaculture: towards the identification and design of novel probiotics. Microorganisms, 12(3), 626. DOI: 10.3390/microorganisms12030626
Vaseeharan, B., Ramasamy, P., 2003. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Letters in Applied Microbiology 36(2), 83-87. DOI: 10.1046/j.1472-765X.2003.01255.x
Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W., 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64(4), 655–671. DOI: 10.1128/mmbr.64.4.655-671.2000
Yanbo, W., Zirong, X., 2006. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Animal Feed Science and Technology 127(3-4), 283-292. DOI: 10.1016/j.anifeedsci.2005.09.003
Zhang, X., Hua, J., Song, Z., Li, K., 2024. A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiology 10(2), 239. DOI: 10.3934/microbiol.2024012
Zimmerman, S.B., Schwartz, C.D., Monaghan, R.L., Pelak, B.A., Weissberger, B., Gilfillan, E.C., Stapley, E.O., 1987. Difficidin and Oxydifficidin: Novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis I. Production, taxonomy and antibacterial activity. The Journal of Antibiotics 40(12), 1677-1681. DOI: 10.7164/antibiotics.40.1677