Effects of different carbon sources on water quality, growth parameters and excretion of metabolic nitrogen in a biofloc -common carp (Cyprinus carpio) culture system

Document Type : Research Paper

Authors

1 Associate Professor, Department of Fisheries Science, Faculty of Agriculture and Natural Resources, GonbadKavous University, Golestan, Iran

2 M.Sc. Department of Fisheries Science, Faculty of Agriculture and Natural Resources, GonbadKavous University, Golestan, Iran

3 Assistant Professor, Department of Fisheries Science, Faculty of Agriculture and Natural Resources, GonbadKavous University, Golestan, Iran

10.22059/jfisheries.2022.333330.1291

Abstract

Biofloc system is a new technology that used in intensive and semi intensive aquaculture systems. The main advantage of this system is reducing the water use, along with increasing the intensity of production based on heterotrophic bacteria than autotrophic bacteria. The fish were divided into 4 groups in 3 replicates. The first group (A) was reared in normal culture situation as a control. In subsequent treatments, juvenile were rearing in a biofloc system containing various carbon sources, including: maize flour (B), Wheat flour (C) and barley flour (D) as different treatments. One hundred and twoenty fingerlings of common carp with initial average body weight of 15.18±2.07g introduced into the experimental treatments and cultured for 45 days. At the end of the experiment, water quality, growth preformance, and metabolic nitrogen excretion rates compared among treatments. Based on the results, water quality improved among all biofloc treatments compared to the control group (p<0.05). Growth indices significantly improved in all biofloc treatments (p<0.05). The highest growth rate and the lowest feed conversion ratio were recorded in the biofloc system containing barley flour (p<0.05). Ammonia and urea excretion in biofloc treatments were significantly higher than the control group (p<0.05). The highest ammonia and urea excretion rates were recorded in the biofloc treatment containing barley flour (p<0.05). Therefore, it was concluded that the use of barley flour as a carbon source in the biofloc system can be used for rearing of common carp. The use of this carbon source, in addition to improving of water quality, is effective in promoting the growth of common carp in the biofloc system.
.

Keywords


Adhikari, S., 2006. Soil and water quality management in aquaculture. Handbook of fisheries and aquaculture. Indian Council of Agricultural research, New Delhi, p.1-30.
Ahmad, I., Leya, T., Saharan, N., Asanaru Majeedkutty, B.R., Rathore, G., Gora, A.H., Bhat, I.A., Verma, A.K., 2019. Carbon sources affect water quality and haemato-biochemical responses of Labeo rohita in zerowater exchange biofloc system. Aquaculture Research 50, 2879–2887.
APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington D.C, USA.
Avnimelech, Y., 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture 264, 140–147.
Avnimelech, Y., 2009. Biofloc Technology: A Practical Guide Book. The World Aquaculture Society, Baton Rouge, Louisiana, United States, 182 P.
Avnimelech, Y., 2012. Biofloc Technology-A Practical Guide Book, 2nd ed. The World Aquaculture Society, Baton Rouge, Louisiana, EUA, 272 P.
Azim, M.E., Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283, 29–35.
Azim, M.E., Little, D.C., Bron, J.E., 2008. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology 99(9), 3590-3599.
Bakhshi, F., Najdegerami, E.H., Manaffar, R., Tukmechi, A., Rahmani Farah, K., 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 484, 259–267.
Bossier, P., Ekasari, J., 2017. Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology 10, 1012–1016.
Brito, L. O., Chagas, A. M., da Silva, E. P., Soares, R. B., Severi, W., Galvez, A.O., 2016. Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquaculture Research 47, 940–950.
Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., Pearson, D. C., 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture 232(1), 525-537.
Castro, M.G., Castro, M.J., De Lara, A.R., Monroy, D.M.C., Ocampo, C.J.A., Davila, F.S., 2016. Length, weight and condition factor comparison of Carassius auratus (Linnaeus, 1758) juveniles cultured in biofloc system. International Journal of Fisheries and Aquatic Studies 4(6), 345-350.
Crab, R., Chielens, B., Wille, M., Bossier, P., Verstraete, W., 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research 41, 559–567.
Crab, R., Defoirdt, T., Bossier, P., Verstraete, W., 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356, 351–356.
Craig, S., Helfrich, L. A., 2002. Understanding Fish Nutrition, Feeds, and Feeding Understanding Fish Nutrition, Feeds, and Feeding. Virgina cooperative extension, Publication, pp. 420-456.
Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K. H., Wagner, M., 2001. In Situ Characterization ofNitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Applied and environmental microbiology 67(11), 5273-5284.
Das, P. C., Ayyappan, S., Jena, J. K., 2006. Haematological changes in the three Indian major carps, Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton) exposed to acidic and alkaline water pH. Aquaculture 256(1), 80-87.
Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., Kamarudin, M. S., 2017. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerolbased biofloc systems. Aquaculture 483, 120-130.
Durigon, E. G., Lazzaric, R., Uczayc, J., de Alcântara Lopesa, D. L., Jerônimod, G. T., Sgnaulin, T., Emerenciano, M. G. T. C., 2019. Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquaculture and Fisheries 5(1), 42-51.
Ebeling, J. M., Timmons, M. B., Bisogni, J. J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257(1), 346-358.
Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., De Schryver, P., 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426, 105–111.
Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin, M., Bossier, P., De Schryver, P., 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441, 72–77.
Elliott, J. M., 1976. Energy losses in the waste products of brown trout (Salmo trutta L). Animal Ecology 45, 561–580.
Engin, K., Carter, C. G., 2001. Ammonia and urea excretion rates of juvenile Australian short-finned eel (Anguilla australis australis) as influenced by dietary protein level. Aquaculture 199, 123-136.
FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.
Finn, R. N., Ronnestad, I., Meeren T., Fyhn, H. J., 2002. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Marine Ecology Progress Series 243, 217-234.
Furuya, W. M., Botaro, D., Maria, R., Macedo, G., De Gomes, V., Rosa Silva, L. C., de Castro Silva, T., Furuya, V. R. B., Sales, P. G. P., 2005. Aplicação do Conceito de Proteína Ideal para Redução dos Níveis de Proteína em Dietas para Tilápia-do-Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia 35, 1433–1441.
Gonçalves, G. S., Pezzato, L. E., Barros, M. M., Julia, M., Rosa, S., 2009. Níveis de proteína digestível e energia digestível em dietas para tilápias-do- nilo formuladas com base no conceito de proteína ideal. Revista Brasileira de Zootecnia 38, 2289–2298.
Haqparast Ramard, M.M., 2017. Investigating the effect of using biofloc technology on growth parameters, water quality, immunity and healthy indices of common carp Cyprinus carpio. Ph.D. thesis, Shahid Chamran University of Ahvaz. 171 p. (In Persian).
Hargreaves, J. A., 2013. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center (U.S.), National Institute of Food and Agriculture (U.S.), 11 P.
Huang, H. H., 2020. Novel biofloc technology (BFT) for ammonia assimilation and reuse in aquaculture in situ. Emerging technologies and research for eco-friendly aquaculture, pp. 3-22.
Ismail M., Wahdan A., Yusuf M., Metwally S.E., Mabrok M., 2019. Effect of dietary supplementation with a synbiotic (Lacto Forte) on growth performance, haematological and histological profiles, the innate immune response and resistance to bacterial disease in Oreochromis niloticus. Aquaculture Research 50(9), 2545-2562.
Ju, Z.Y., Forster, I., Conquest, L., Dominy, W., Kuo, W.C., David Horgen, F., 2008. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research 39(2), 118-133.
Kamilya, D., Debbarma, M., Pal, P., Kheti, B., Sarkar, S., Singh, S. T., 2017. Biofloc technology application in indoor culture of Labeo rohita (Hamilton, 1822) fingerlings: the effects on inorganic nitrogen control, growth and immunity. Chemosphere 182, 8–14.
Khanjani, M. H., Sajjadi, M., Alizadeh, M., Sourinejad, I., 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences 15(4), 1465–1484.
Khanjani, M. H., Sajjadi, M., Alizadeh, M., Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research 48, 1491–1501.
Khanjani, M., Sajjadi, M., Alizadeh, M., Sourinejad, I., 2015. Effect of different feeding levels on water quality, growth performance and survival of western white shrimp (Litopenaeus vannamei Boone, 1931) post larvae with application of biofloc technology. Iranian Scientific Fisheries Journal 24 (2), 13-27. (In Persian).
Khanjani, M.H., 2015. Effect of different feeding ratios in biofloc system on water quality, growth performance and carcass composition of western white shrimp (Litopenaeus vannamei Boone, 1931). Ph.D. thesis, Hormozgan University. 165 p. (In Persian).
Khatoon, H., Banerjee, S., Yuan, G. T. G., Haris, N., Ikhwanuddin, M., Ambak, M. A., Endut, A., 2016. Biofloc as a potential natural feed for shrimp postlarvae. International Biodeterioration and Biodegradation 113, 304–309.
Kozloski, G. V., Senger, C. C. D., Perottoni, J., Sanchez, L. B., 2006. Evaluation of two methods for ammonia extraction and analysis in silage samples. Animal feed science and technology, 127(3-4), 336-342.
Luo, G. Z., Gao, Q., Wang, C. H., Liu, W. C., Sun, D. C., Li, L., Tan, H., 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 422, 1–7.
Mahanand, S. S., Moulick, S., Rao, P. S., 2013. Optimum formulation of feed for rohu, Labeo rohita (Hamilton), with biofloc as a component. Aquaculture International 21, 347–360.
Megahed, M. E., 2010. The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society 5, 119–142.
Najdegerami, E. H., Bakhshi, F., Bagherzadeh Lakani, F., 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry 42 (2), 457–465.
Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature 405(6790), 1017-1024.
Pezzato, L. E., Miranda, E. C., Barros, M. M., Pinto, L. G. Q., Furuya, W. M., Pezzatoet, A. C., 2002. Digestibilidade aparente de ingredientes pela tilápia do Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia 31, 1595–1604.
Putra, I., Effendi, I., Lukistyowati, I., Tang, U. M., Fauzi, M., Suharman, I., Muchlisin, Z. A. 2020. Effect of different biofloc starters on ammonia, nitrate, and nitrite concentrations in the cultured tilapia Oreochromis niloticus system. F1000 Reasearch 9 (293) 1-6.
Rafiee, GH., Saad, Ch.R. Kamarudin, M.S., Ismail, M.R., 2006. Estimation of ammonia excretion rates during a period of red tilapia culture, considering biomass increase in a water recirculating system, Iranian Journal of Fisheries Sciences (1) 69-82.
 Ruyet, J. P., Mahé, K., Bayon, N. L., Delliou, H. L., 2004. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237, 269-280.
Sharma, D. A., sharma, K., sangotra, R., 2015. Biofloc culture and its utilisation as feed in limited water exchange system for the culture of labeo rohita. Journal of International Academic Research for Multidisciplinary 3(2), 185-193.
Sun, L., Chen, J., 2009. Effects of ration and temperature on growth, fecal production, nitrogenous excretion and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture 292, 197-206.
Tacon, A., Cody, J., Conquest, L., Divakaran, S., Forster, I., Decamp, O., 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition 8, 121–137.
Wang, G., Yu, E., Xie, J., Yu, D., Li, Z., Luo, W., Qiu, L., Zheng, Z., 2015. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture 443, 98-104.
Wasielesky, W., Atwood, H., Stokes, A., Browdy, C. L., 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258, 396–403.
Wei, Y., Liao, S. A., Wang, A. L., 2016. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture 465, 88-93.
Widanari, A., Ekasari, J., Maryam, S., 2012. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp cultured at different stocking densities.  Journal of biosciences 2, 73- 80.
Zhao, Z. G., Xu, Q. Y., Luo, L., Yin, J. S., Wang, C. A., 2013. Effect of adding carbon source on growth of fish and water quality in Songpu mirror carp (Cyprinus specularis Songpu) pond. Journal of Northeast Agricultural University 44, 105-112.