Improvement of growth performance, digestive enzymes of common carp (Cyprinus carpio) and water quality using diets containing Saccharomyces cerevisiae yeast in a biofloc culture system

Document Type : Research Paper

Authors

Department of Fisheries Department, Faculty of Agriculture and Natural Resources, Gonbad Kavos University, Golestan, Iran.

10.22059/jfisheries.2024.376478.1425

Abstract

In this study, the effects of low protein diet containing 0 (control), 2 (B1), 4 (B2) and 8% (B3) Saccharomyces cerevisiae on growth and immunity performance of common carp and water quality of culture system were evaluated for 56 days. The 204 fish with the mean weight of 13.14±0.33 g were distributed into 12 culture tanks in triplicates. The results showed that 2% of yeast in the diet (B1) can improve the final weight (25.05±0.92 g) (P<0.05) and reduce the food conversion ratio (1.21±0.08). Also, in the treatment of 2% yeast (B1), the activities of digestive enzymes amylase, lipase and protease intestinal had a statistically significant increase compared to other experimental treatments (P<0.05). The diet containing 2% yeast significantly increased the activity of lysozyme and total immunoglobulin in serum (26.47±0.42 u/ml/min and 16.02±0.11 mg/ml, respectively), while serum ACH50 had no statistically significant difference among treatments (P≤0.05). The total ammonia (TAN) concentration was significantly lower in B1 and B2 biofloc treatments compared to other experiments (P<0.05). Based on the present results, the diet containing 2% yeast in treatment B1 can improve the activity of digestive enzymes, growth performance and immune responses of common carp grown in biofloc environment.

Keywords

Main Subjects


Adineh, H., jafaryan, H., Khademi Hamidi, M., Karimtabar, F.Z., Sedaghat, Z., 2021. The effects of reducing the feeding rates on growth and feed performance, blood biochemical parameters, and water quality in biofloc common carp (Cyprinus carpio) culture and clean systems. Journal of Fisheries 74(3), 453-466. DOI: 10.22059/jfisheries.2021.324020.1251(In Persian)
Adineh, H., Naderi, M., Hamidi, M.K., Harsij, M., 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology 95(1), 440-448. DOI: 10.1016/j.fsi.2019.10.057
Adineh, H., Naderi, M., Jafaryan, H., Khademi Hamidi, M., Yousefi, M., Ahmadifar, E., 2022. Effect of stocking density and dietary protein level in biofloc system on the growth, digestive and antioxidant enzyme activities, health, and resistance to acute crowding stress in juvenile common carp (Cyprinus carpio). Aquaculture Nutrition 1-15. DOI: 10.1155/2022/9344478
Akbary, P., 2021. Blood serum enzymes and antioxidant system of liver in grey mullet, Mugil cephalus Linnaeus 1758, fed with different levels of Saccharomyces cerevisiae yeast. Journal of Aquaculture Development 15(3), 1-11. DOI: 10.52547/aqudev.15.3.1(In Persian)
American Public Health Association (APHA). 1998. In: Clescert, L., Greenberg, A., Eaton, A. (Eds.), Standard Methods for the Examination of Water and Wastewater. 20th edition. Washington, USA.
Anany, E.M., Ibrahim, M.A., El-Razek, I.M.A., El-Nabawy, E.S.M., Amer, A.A., Zaineldin, A.I., Dawood, M.A., 2023. Combined Effects of Yellow Mealworm (Tenebrio molitor) and Saccharomyces cerevisiae on the Growth Performance, Feed Utilization Intestinal Health, and Blood Biomarkers of Nile Tilapia (Oreochromis niloticus) Fed Fish Meal-Free Diets. Probiotics and Antimicrobial Proteins 1-12. DOI: 10.1007/s12602-023-10199-8
Avnimelech, Y., 2009. Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge, pp:182.
Azim, M.E., Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283(1-4), 29-35. DOI: 10.1016/j.aquaculture.2008.06.036
Crab, R., Chielens, B., Wille, M., Bossier, P., Verstraete, W., 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacultural Engineering 41, 559-567. DOI: 10.1111/j.1365-2109.2009.02353.x
Das, A., Nakhro, K., Chowdhury, S. and Kamilya, D. 2013. Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish and shellfish immunology 35(5), 1547-1553. DOI: 10.1016/j.fsi.2013.08.022
De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W., 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture 277(3-4), 125-137. DOI: 10.1016/j.aquaculture.2008.02.019
del Valle, J.C., Bonadero, M.C., Gimenez, A.V.F., 2023. Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview. Aquaculture 739342, DOI: 10.1016/j.aquaculture.2023.739342
Ebrahim, M., Abou-Seif, R., 2008. Fish meal replacement by yeast protei (Saccharomyces cerevisiae) supplemented with biogenic l-carnitin as a source of methionine plus lysine mixture in feed for Nile Tilapia. 8th international symposium on Tilapia in aquaculture. Central Laboratory for Aquaculture Research, Agriculture Research Center, Cairo, Egypt, pp: 999-1009.
El-Bab, A.F.F., Saghir, S.A., El-Naser, I.A.A., El-Kheir, S.M.A., Abdel-Kader, M.F., Alruhaimi, R.S., El-Raghi, A.A., 2022. The effect of dietary saccharomyces cerevisiae on growth performance, oxidative status, and immune response of sea bream (Sparus aurata). Life 12(7), 1013. DOI: 10.3390/life12071013
Ellis, A. E. 1990. Lysozyme Assays: In Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Van Muiswinkel WB, editors. Techniques in: Fish Immunology. Fair Haven. NJ: SOS Publications, 101-103.
Gibson, G.R., 2008. Prebiotics as gut microflora management tools. Journal of clinical gastroenterology 42, S75-S79. DOI: 10.1097/MCG.0b013e31815ed097
Hao, Q., Xia, R., Zhang, Q., Xie, Y., Ran, C., Yang, Y., Zhou, Z., 2022. Partially replacing dietary fish meal by Saccharomyces cerevisiae culture improves growth performance, immunity, disease resistance, composition and function of intestinal microbiota in channel catfish (Ictalurus punctatus). Fish and Shellfish Immunology 125, 220-229. DOI: 10.1016/j.fsi.2022.05.014
Hou, X., Sun, L., Li, Z., Deng, X., Guan, H., Luo, C., Li, X., 2022. An Evaluation of Yeast Culture Supplementation in the Diet of Pseudobagrus ussuriensis: Growth, Antioxidant Activity, Nonspecific Immunity, and Disease Resistance to Aeromonas hydrophilaAquaculture Nutrition  9739586, 1-10. DOI: 10.1155/2022/9739586
Huang, L., Ran, C., He, S., Ren, P., Hu, J., Zhao, X., Zhou, Z., 2015. Effects of dietary Saccharomyces cerevisiae culture or live cells with Bacillus amyloliquefaciens spores on growth performance, gut mucosal morphology, hsp70 gene expression, and disease resistance of juvenile common carp (Cyprinus carpio). Aquaculture 438, 33-38. DOI: 10.1016/j.aquaculture.2014.12.029
Iijima, N., Tanaka, S., Ota, Y., 1998. Purfication and characterization of bile salt activated Lipase from the hepatopancreas of red sea bream (Pagrus major). Journal of Fish Physiology and Biochemistry 18, 59-69. DOI: 10.1023/A:1007725513389
Khanjani, M.H., Mozanzadeh, M.T., Sharifinia, M., Emerenciano, M.G.C., 2023. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture 562, 738757. DOI: 10.1016/j.aquaculture.2022.738757
Khosravi Farsani, A., Hashemzadeh, I., Pirali, E., 2022. Effects of dietary fish meal replacement with Yeast (Saccharomyces cervisiae) on growth and feeding indices rainbow trout (Oncorhynchus mykiss). Journal of Aquaculture Development 15 (4), 57-69. DOI: 10.52547/aqudev.15.4.57 (In Persian)
Li, P., Gatlin III, D.M., 2004. Dietary brewer's yeast and the prebiotic Grobiotic™ AE influence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops× M. saxatilis) to Streptococcus iniae infection. Aquaculture 231(1-4), 445-456. DOI: 10.1016/j.aquaculture.2003.08.021
Limbu, D., Sarkar, B.R., Adhikari, M.D., 2024. Role of Probiotics and Prebiotics in Animal Nutrition. Sustainable Agriculture Reviews: Animal Biotechnology for Livestock Production 4, 173-204. DOI: 10.1007/978-3-031-54372-2_6
Liu, G., Ye, Z., Liu, D., Zhao, J., Sivaramasamy, E., Deng, Y., Zhu, S., 2018. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish and shellfish immunology 81, 416-422. DOI: 10.1016/j.fsi.2018.07.047
Long, L., Yang, J., Li, Y., Guan, C., Wu, F., 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448, 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
Lu, J., Qi, C., Limbu, S.M., Han, F., Yang, L., Wang, X., Chen, L., 2019. Dietary mannan oligosaccharide (MOS) improves growth performance, antioxidant capacity, non-specific immunity and intestinal histology of juvenile Chinese mitten crabs (Eriocheir sinensis). Aquaculture 510, 337-346. DOI: 10.1016/j.aquaculture.2019.05.048
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., Tan, H., 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 422, 1-7. DOI: 10.1016/j.aquaculture.2013.11.023
Mahmoudi Khoshdarehgi, M., Haji Moradloo, A., Dastar, B., 2019. Determining the appropriate level of protein in diet of Cyprinus carpio fry based on some parameters of growth, blood and serum biochemistry in biofloc system. Journal of Applied Ichthyological Research 7 (1), 61-84 (In Persian)
Najdegerami, E.H., Bakhshi, F., Lakani, F.B., 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry 42(2), 457-465. DOI: 10.1007/s10695-015-0151-9
Nakano, T., Kanmuri, T., Sato, M., Takeuchi, M., 1999. Effect of astaxanthin rich red yeast (Phaffia rhodozyma) on oxidative stress in rainbow trout. Biochimistry Biophysic Acta 1426, 119-125. DOI: 10.1016/S0304-4165(98)00145-7
Perdichizzi, A., Meola, M., Caccamo, L., Caruso, G., Gai, F., Maricchiolo, G., 2023. Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters. Animals 13(21), 3383. DOI: 10.3390/ani13213383
Rafiee, G., Vafadar, A., 2021. The effect of substituting different levels of Saccharomyces cerevisiae yeast in the diet of rainbow trout (Oncorhynchus mykiss) to reduce the consumption of fish meal and their effect on growth indices, survival and carcass composition. Journal of Animal Environment 13(3), 201-208.DOI: 10.22034/aej.2020.247470.2346 (In Persian)
Ravindra, P., 2000. Value-added food: Single cell protein. Biotechnology Advances 18(6), 459-479. DOI: 10.1016/S0734-9750(00)00045-8
Řehulka, J., Minařík, B., Adamec, V., Řehulková, E., 2005. Investigations of physiological and pathological levels of total plasma protein in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research 36(1), 22-32. DOI: 10.1111/j.1365-2109.2004.01177.x
Saegusa, S., Totsuka, M., Kaminogawa, S., Hosoi, T., 2004. Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunology & Medical Microbiology 41(3), 227-235. DOI: 10.1016/j.femsim.2004.03.006
Salehi, H. 2003. Market perspective on cultured carp products in Iran. Asia Pacific Conference on Aquaculture. Bangkok, Thailand. 45 p.
Sharrer, M.J., Tal, Y., Ferrier, D., Hankins, J.A., Summerfelt, S.T., 2007. Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system. Aquaculture Engineering 36, 159–176. DOI: 10.1016/j.aquaeng.2006.10.003
Siddik, M.A., Foysal, M.J., Fotedar, R., Francis, D.S., Gupta, S.K., 2022. Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture 546, 737346. DOI: 10.1016/j.aquaculture.2021.737346
Sunyer, J.O., Tort, L., 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Veterinary Immunology and Immunopathology 45, 333-345. DOI: 10.1016/0165-2427(94)05430-Z
Tewary, A., Patra, B.C., 2011. Oral administration of baker's yeast (Saccharomyces cerevisiae) acts as a growth promoter and immunomodulator in Labeo rohita (Ham.). Journal of Aquaculture Research and Development 2(1), 1-7.
Tokur, B., Ozkutuk, S., Atici, E., Ozyurt, G., Ozyurt, C.E., 2006. Chemical and sensory quality changes of fish fingers, made from mirror carp (Cyprinus carpio L., 1758), during frozen storage (-18C). Food Chemistry 99, 335-341. DOI: 10.1016/j.foodchem.2005.07.044
Wang, B., Thompson, K.D., Wangkahart, E., Yamkasem, J., Bondad‐Reantaso, M.G., Tattiyapong, P., Surachetpong, W., 2023. Strategies to enhance tilapia immunity to improve their health in aquaculture. Reviews in Aquaculture 15, 41-56. DOI: 10.1111/raq.12731
Worthington, C.C., 1993. Worthington Enzyme Manual. Enzymes and related Biochemicals Worthington Chemical. New Jersey. USA. 730 p.
Xu, W.J., Pan, L.Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 356, 147-152. DOI: 10.1016/j.aquaculture.2012.05.022
Xu, W.J., Pan, L.Q., 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture 412, 117-124.
Zhang, J., Liu, Y., Tian, L., Yang, H., Liang, G., Xu, D., 2012. Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannameiFish and Shellfish Immunology 33(4), 1027-1032. DOI: 10.1016/j.fsi.2012.05.001