Aderolu, A.Z., Aarode, O.O., Bello, R.A., 2013. Inclusion effect of graded levels of molases in the diet of Clarias gariepinus juvenile. International Journal of Fisheries and Aquatic Studies 5(7), 172-176. DOI: 10.5897/IJFA11.055
AOAC., 2005. Official Methods of Analysis (18th ed.). Maryland, USA: Association of Official Analytical Chemists International.
Baccarin, A.E., Pezzato, L.E., 2001. Effects of molasses yeast in diets of Nile tilapia. Pesquisa Agropecuária Brasileira 36(1), 549-556. DOI: 10.1590/S0100-204X2001000300021
Beigi, M., Hajimoradu, A., Hosseinifar, S.H., Jafer, A., 2019. Effect of different levels of dietary beet molasses on some mucus immunity parameters and serum biochemical indices of common carp (Cyprinus carpio). Journal of Animal Environment 11(2), 22-38.
Beygi, M., Moradlou, A.H., Nodeh, A.J., 2021. Effect of different levels of dietary beet molasses on growth and survival indices, intestinal flour bacillus and papyrus length of common carp (Cyprinus carpio). Journal of Animal Environment 13(1), 325-330.
Beigi, M., Hajimoradlou, A., Hosseinifar, S.H., Jafarnoodeh, A., 2020. Effect of different levels of dietary beet molasses on carcass composition and liver enzymes Common carp (Cyprinus carpio). Journal of Animal Environment 12(3), 111-132.
Baptista, C.M.S.G., Cóias, J.M.A., Oliveira, A.C.M., Oliveira, N.M.C., Rocha, J.M.S., Dempsey, M.J., Lannigan, K.C., Benson, P.S., 2006. Natural immobilisation of microorganisms for continuous ethanol production. Enzyme and Microbial Technology 40(1), 127-131. DOI: 10.1016/j.enzmictec.2005.12.025
Bakhshi, F., Najdegerami, E.H., Manaffar, R., Tukmechi, A., Farah, K.R., 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 484(1), 259-267. DOI: 10.1016/j.aquaculture.2017.11.036
Chen, C.Y., Wooster, G.A., Bowser, P.R., 2004. Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate. Aquaculture 239(4), 421-443. DOI: 1016/j.aquaculture.2004.05.033
Divakaran, S., Obaldo, L.G. Forster, I.P., 2002. Note on the methods for determination of chromic oxide in shrimp feeds. Journal of Agricultural and Food Chemistry 50(3), 464-467. DOI: 10.1021/jf011112s
Felix, N., Sudharsan, M., 2004. Effect of glycine betaine, a feed attractant affecting growth and feed conversion of juvenile freshwater prawn Macrobrachium rosenbergii. Aquaculture Nutrition 10(3), 193-197. DOI: 10.1111/j.1365-2095.2004.00292.x
Fenton, J.D., 1979. A high-order cnoidal wave theory. Journal of Fluid Mechanics 94(1), 129-161.
Fernandes, H., Salgado, J. M., Ferreira, M., Vršanská, M., Fernandes, N., Castro, C., Belo, I., 2022. Valorization of brewer’s spent grain using biological treatments and its application in feeds for European seabass (Dicentrarchus labrax). Frontiers in Bioengineering and Biotechnology 10, 732948.
Fetterer, R.H., Augustine, P.C., Allen, P.C., Barfield, R.C., 2003. The effect of dietary betaine on intestinal and plasma levels of betaine in uninfected and coccidia-infected broiler chicks. Parasitology Research 90(4), 343-348. DOI: 10.3923/ajava.2010.193.201
Glencross, B.D., Hawkins, W.E. Curnow, J.G., 2003. Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after grow‐out on plant oil based diets. Aquaculture Nutrition 9(6), 409-418. DOI: 10.1046/j.1365-2095.2003.00272.x
Glencross, B.D., 2020. A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquaculture Nutrition 26(6),1871-1883. DOI: 10.1111/anu.13138
Heinitz, M.C., Silva, C., Schulz, C., Lemme, A., 2018. The effect of varying dietary digestible protein and digestible non-protein energy sources on growth, nutrient utilization efficiencies and body composition of carp (Cyprinus carpio) evaluated with a two-factorial central composite study design. Aquaculture Nutrition 24(2), 723-740. DOI: 10.1111/anu.12601
Hoseinifar, S.H., Mirvaghefi, A., Mojazi Amiri, B., Rostami, H.K., Merrifield, D.L. 2011. The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquaculture Nutrition 17(5), 498-504. DOI: 10.1111/j.1365-2095.2010.00828.x
Jafer Sadique, K., Pandey, A., Khairnar, S.O., BT, N.K., 2018. Effect of molasses-fermented water hyacinth feed on growth and body composition of common carp, Cyprinus carpio. Journal of Entomology and Zoology Studies 6(1), 1161-1165.
Khademi Hamidi, M., Adineh, H., Harsij, M., Gholipour Kanani, H., 2019. Effects of adding molasses in water and diet of common carp on growth, blood biochemical indices, digestive enzymes and water quality in a biofloc system. Aquatic Animals Nutrition 5(1), 25-34. DOI: 10.22124/JANB.2019.13636.1063
Keysami, M. A., Mohammadpour, M., 2013. Effect of Bacillus subtilis on Aeromonas hydrophila infection resistance in juvenile freshwater prawn, Macrobrachium rosenbergii (de man). Aquaculture International 21(3), 553-562. DOI: 10.1007/s10499-012-9588-3
Keysami, M. A., Zoughi Shalmani A, Zahmatkesh Kumleh A, Karimi A., 2022. Isolation and identification of bacterial flora of the digestive tract of silver carp broodstock. Quarterly Journal of Animal Environment 14(4), 173-180. (In Persian)
Khanjani, M.H., Alizadeh, M., Mohammadi, M., Aliabad, H.S., 2021. The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia Raised in a Low-Salinity Biofloc System. Annals of Animal Science 21(4), 1435-1454. DOI: 10.2478/aoas-2021-0011
Kohlmann, K., Gross, R., Murakaeva, A., Kersten, P., 2003. Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquatic Living Resources 16(5), 421-431. DOI: 10.1016/S0990-7440 (03)00082-2
Kuhn, D., Lawrence, D., Ex-situ, A., 2012.biofloc technology. In: Avnimelech, Y, editor. Biofloc Technology-a practicalguide book, 2nd ed., The WorldAquaculture Society Baton Rouge, Louisiana, USA.
Long, L., Yang, J., Li, Y., Guan, C., Wu, F., 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448(1), 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
Martínez-Córdova, L.R., Martínez-Porchas, M., Emerenciano, M.G.C., Miranda-Baeza, A., Gollas-Galván, T., 2017. From microbes to fish the next revolution in food production. Critical Reviews in Biotechnology 37(3), 287-295. DOI: 10.3109/07388551.2016.1144043
Mazid, M.A., Zaher, M., Begum, N.N., Ali, M.Z., Nahar, F., 1997. Formulation of cost-effective feeds from locally available ingredients for carp polyculture system for increased production. Aquaculture 151(1), 71-78. DOI: 10.1016/S0044-8486(96)01504-9
Moffitt, C. M., Cajas‐Cano, L., 2014. Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries 39(11), 552-553.
Mordenti AL, Giaretta E, Campidonico L, Parazza P, Formigoni A., 2021. A Review Regarding the Use of Molasses in Animal Nutrition. Animals 11, 115. DOI: 10.3390/ani11010115
Najdegerami, E.H., Bakhshi, F., Lakani, F.B., 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry 42(2), 457-465. DOI: 10.1007/s10695-015-0151-9
Naylor, R., Burke, M., 2005. Aquaculture and ocean resources: raising tigers of the sea. Annual Review of Environment and Resources 30(1), 185-218. DOI: 10.1146/annurev.energy.30.081804.121034
Nikoskelainen, S., Ouwehand, A.C., Bylund, G., Salminen, S., Lilius, E.M., 2003. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish and Shellfish Immunology 15(5), 443-452. DOI: 10.1016/s1050-4648(03)00023-8
Primera-Campos, F., Nouel-Borges, G.E. Sánchez-Blanco, R., 2020. Intake and digestibility of rations with distillery yeasts byproducts, molasses and ammoniated sugar cane tops in lambs in total confinement. Revista Colombiana de Ciencia Animal Recia 12(1), 5-14. DOI: 10.24188/recia.v12.n1.2020.731
Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V., Ayub, Z., Harisanto, M., Horowitz, A., Brock, D.L., 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering 36(2), 184-191. DOI: 10.1016/j.aquaeng.2006.10.004
Sheikh Veisi, R., Hedayati, A., Mazandarani, M., Jafar Nodeh, A., Bagheri, T., 2022. Dietary beet molasses improved the immune system of common carp (Cyprinus carpio) after exposure to titanium oxide nanoparticles, TiO2-NPs. Bulletin of Environmental Contamination and Toxicology, 108(5), 969-975.
Thiex, N., 2009. Evaluation of analytical methods for the determination of moisture, crude protein, crude fat, and crude fiber in distillers dried grains with solubles. Journal of AOAC international 92(1), 61-73.
Thiessen, D.L., Maenz, D.D., Newkirk, R.W., Classen, H.L., Drew, M.D., 2004. Replacement of fishmeal by canola protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 10(6), 379-388.
Veisi, R. S., Hedayati, A., Mazandarani, M., Nodeh, A. J., Bagheri, T., 2021. Dietary beet molasses enhanced immunity system of common carp (Cyprinus carpio) exposed to copper nano oxide, CuO-NP. Aquaculture Reports 19(1), 100589.
Waldroup, P. W., 1981. Use of molasses and sugars in poultry feeds. World's Poultry Science Journal 37(3), 193-202.
Wray-Cahen, D., Fernandez-Fıgares, I., Virtanen, E., Steele, N.C., Caperna, T.J., 2004. Betaine improves growth, but does not induce whole body or hepatic palmitate oxidation in swine (Sus scrofa domestica). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 137(1), 131-140.
Zhang, N., Luo, G., Tan, H., Liu, W., Hou, Z., 2016. Growth, digestive enzymeactivity and welfare of tilapia (Oreochromis niloticus) reared in abiofloc-based system with polyβhydroxybutyric as a carbon source. Aquaculture 464(1), 710-717. DOI: 10.1016/j.aquaculture.2016.08.013