Production of the production of marine microalgae Chaetoceros sp. in different concentration of minerals to get a specific culture medium

Document Type : Research Paper

Authors

Department of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

10.22059/jfisheries.2025.401383.1466

Abstract

The essential role of algae in the aquaculture industry has been identified as directly feeding mollusks, crustaceans, and fish, and their economic production is of great importance in aquaculture, and efforts are being made to provide many formulations for their economic production as a culture medium. Therefore, in this study, the growth (biomass production) of the marine microalgae Chaetoceros sp. was evaluated by mass culture method and with different concentrations of minerals using commercial agricultural salts and compared with specific culture medium (F/2). For this purpose, four new culture media with four concentrations of minerals, 25, 50, 75 and 100 percent, were made with the same ratio of minerals. The microalgae Chaetoceros sp. showed maximum density in F/2 medium on the thirteenth day with a density of 106×36.5±0.056568×106 cells/ml and during the thirteen days of the experiment with a mean density of 106×276728×323333.4±0.056568×106 cells/ml. In contrast, the treatment with 100% concentration on the eighth day produced 3.93 × 106 cells per ml ± 1.230365×106 and over a total period of thirteen days produced 3.013333 × 106 cells per ml ± 0.276728×106 (P<0.05). These amounts on the thirteenth day were 106×0.395979±106 × 1.52 in the 75% treatment, 106×0.296984±106×2.71 in the 50% treatment, 106×0.141421±106×1.9 in the 25% treatment. As a result, it can be said that the culture medium with 100% concentration and the same ratio of mineral elements can be used as specific medium for culture of this algae.

Keywords

Main Subjects


Becerra-Dórame, M., López-Elías, J.A., Martínez-Córdova, L.R. 2010. An alternative outdoor production system for the microalgae Chaetoceros muelleri and Dunaliella sp. during winter and spring in Northwest Mexico. Aquacultural Engineering, 43(1): 24-28. DOI: 10.1016/j.aquaeng.2010.03.002
Berges, J.A., Franklin, D.J., Harrison, J., 2001. Evolution of artificial seawater medium: Improvement in enriched seawater, artificial water over the last two decades, Applied Phycology, 37, 1138-1145. DOI: 10.1046/j.1529-8817.2001.01052.x
Cheirsilp, B., Mandik, Y.I., Prasertsan, P. 2015. Evaluation of optimal conditions for cultivation of marine Chlorella sp. as potential sources of lipids, exopolymeric substances and pigments. Aquaculture International 24(1), 313-326. DOI: 10.1007/s10499-015-9927-2
Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D J., Chang, J.S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology 102(1), 71-81. DOI: 10.1016/j.biortech.2010.06.159
Chia, M. A., Lombardi, A.T., Melãno, M D.G.G., 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences 85(4), 1427-1438. DOI: 10.1590/0001-3765201393312
Fábregas, J., Toribio, L., Abalde, J., Cabezas, A., Herrero, C., 1987. Approach to biomass production of the marine microalgae Tetraselmis suecica (Kylin) Butch using common garden fertilizer and soil extract as cheap nutrient supply in batch cultures. Aquacultural Engineering 6(2), 141-150. DOI: 10.1016/0144-8609(87)90011-2
Gim, G.H., Ryu, J., Kim, M.J., Kim, P.I., Kim, S.W., 2016. Effect of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture condition. Industrial Microbiology and Biotechnology, 43, 605-616.
Guillard, R.L L., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M.H., (Eds.), Culture of Marine Invertebrates Animals. Plenum Press, New York, pp. 29-60.
Hemaiswarya, S., Raja, R., Ravi Kumar, R., Ganesan, V., Anbazhagan, C., 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology 27, 1737-1746. DOI: 10.1007/s11274-010-0632-z
Imamoglu, E., Sukan, E.F.V., Dalay, M.C., 2007. Effect of Different Culture Media and Light Intensities on Growth of Haematococcus pluvialis. International Journal of Natural and Engineering Sciences 1(3), 5-9.
Jad-Allah El Nabris, K. 2012. Development of cheap and simple culture medium for the Nannochloropsis sp. based on agriculture grade fertilizers available in the local marketof Gaza Strip (Palestine). Al Azhar University- Gaza (Natural Sciences) 14, 61-67.
Jad-Allah El Nabris, K. 2012. Development of cheap and simple culture medium for the Nannochloropsis sp. based on agriculture grade fertilizers available in the local marketof Gaza Strip (Palestine). Al Azhar University- Gaza (Natural Sciences), 14, 61-67
Lananan, F., Juso, A., Ali, N., Lam, S S., Endut, A., 2013. Effect of Conway medium and F/2 medium on the growth of six genera of South China Sea marine microalgae. Bioresource Technology 141, 75-82. DOI: 10.1016/j.biortech.2013.03.006
Lingxiao Ren, Peifang WangChao WangJuan ChenJun HouJin Qian.2017. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments, Environmental Pollution A (220), 274-285. DOI: 10.1016/j.envpol.2016.09.061
Naseri, M.H., Khalesi, M.K., Jafarpour, S.A., Esmaeili A.Gh., Nemat Zade, G.A., 2015. The effect of culture media on growth and chlorophyll content of Nannochloropsis oculata in tubular photobioreactor. Journal of Plant Research (Iranian Journal of Biology) 28(3), 636-646. (In Persian)
Neilson and Larsson.2006. The utilization of organic nitrogen for growth of algae. Physiological Aspects 48(4), 542–553. DOI: 10.1111/j.1399-3054.1980.tb03302.x
Perumal, S.A.R.T., Pachiappan, P. (Editors). 2015. Advances in Marine and Brackishwater Aquaculture. Springer (India) Pvt. Ltd. is part of Springer science + Business Media (www. Springer.com). www. Ebook3000.com- Isolation and Culture of Microalga, 1- 15, p. 226.
Prasetyo, Y., Apriliyadi, E., Hidajat, E., Novianti, F., 2009. Resistance to innovation: Case of appropriate technology implementation in rural agriculture communities. Available at SSRN 2101656.
Quinn, J C., Yates, T., Douglas, N., Weyer, K., Butler, J., Bradley, T.H., Lammers, P.J., 2012. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresource Technology 117, 164-171. DOI: 10.1016/j.biortech.2012.04.073
Rafiee, G.R., Saad, C.R., Kamarudin, M.S., Sijam, K., Ismail, M.R., Yusoq, K., 2002. Use of aquaculture wastewaters as nutrient solutions for growth of lettuce (Lactuca Savita var longifolia). Proceeding of Asia-Pacific Conference on marine Science and technology, “Marine Science into the New Millennium” 12-16 may, Kuala Lumpur, Malaysia, 1, 354-360.
Rousch, J.M., Bingham, S.E., Sommerfeld, M.R., 2003. Changes in fatty acid profiles of thermo-intolerant and thermo-tolerant marine diatoms during temperature stress. Journal of Experimental Marine Biology and Ecology 295(2), 145-156. DOI: 10.1016/S0022-0981(03)00293-4
Sakarika, M., Kornaros, M., 2016. Effect of pH on growth and lipid accumulation kinetics of the microalgae Chlorella vulgaris grow heterotrophically under sulfur limitation. Bioresource Technology 219, 694-701. DOI: 10.1016/j.biortech.2016.08.033
Salas, L.S.M., Aranda, F.J.O., Pámanes, L.E.G., 1992. Efecto de la microalga Pavlova lutheri (Droop) cultivada con fertilizantes agrícolas en el crecimiento y supervivencia de larvas y postlarvas del mejillo´n Mytilus edulis (L). Ciencias Marinas 18(4), 57-74.
Simental, J.A., Sánchez-Saavedra, M.P., 2003. The effect of agricultural fertilizer on growth rate of benthic diatoms. Aquacultural Engineering 27(4), 265-272. DOI: 10.1016/S0144-8609(02)00087-0
Simental, J.A., Sánchez-Saavedra, M.P., 2003. The effect of agricultural fertilizer on growth rate of benthic diatoms. Aquacultural Engineering 27(4), 265-272. DOI: 10.1016/S0144-8609(02)00087-0
Valenzuela-Espinoza, E., Millán-Núñez R., Núñez-Cebrero, F., 1999. Biomass production and nutrient uptake by Isochrysis aff. galbana (Clone T-ISO) culture with a low cost alternative to the f/2 medium. Aquacultural Engineering 20(3), 135-147. DOI: 10.1016/S0144-8609(99)00011-4
Walne, P.R. 1970. Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fishery Investigation. London, Series 2, 24(5), 1-62.
Wang, B., Lan, C. 2010. Microalgae for Biofuel Production and CO2 Sequestration. Energy Science, Engineering and Technology Series, Nova Science, New York, USA.
Xin, L., Hong-ying, H., Ke, G., Ying-xue, S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101(14), 5494-5500. DOI: 1016/j.biortech.2010.02.016