محافظت ماهی باس دریایی آسیایی (Lates calcarifer) برعلیه ویبریو آلجینولیتیکوس و استرپتوکوکوس اینیایی با واکسن کشتة دو ظرفیتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکدة آبزی‌پروری آب‌های جنوب کشور، مؤسسة تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران.

2 مؤسسة تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

10.22059/jfisheries.2025.379378.1436

چکیده

این مطالعه با هدف توسعه و ارزیابی واکسن دو ظرفیتی کشته‌شده علیه ویبریو آلجینولیتیکوس و استرپتوکوکوس اینیایی به‌صورت تزریق داخل صفاقی در ماهی باس دریایی آسیایی (Lates calcarifer) انجام گردید. ماهی‌ها به سه گروه 60 تایی در سه تکرار تقسیم شدند: گروه شاهد تزریق شده با نمک بافر فسفات (PBS)، گروه دوم واکسینه‌شده با واکسن دو ظرفیتی (Vibrio alginolyticus + Streptococcus iniae) و گروه سوم با واکسن دو ظرفیتی به اضافه یک بوستر خوراکی واکسینه شدند. شاخص‌های ایمنی غیر اختصاصی و تیتر آنتی‌بادی قبل و سه، پنج و هشت هفته پس از واکسیناسیون اندازه‌گیری شد. همچنین اثربخشی واکسن کشته‌شده پنج هفته پس از واکسیناسیون با چالش با هر جدایه به‌طور جداگانه ارزیابی شد. گروه‌های واکسینه‌شده نسبت به گروه کنترل میزان بقای بالاتری داشتند. بالاترین درصد نسبی بقا، 73/91و  3/84±73/07درصد بود که در گروه سه به ترتیب بعد از چالش با S. iniae و V. alginolyticus مشاهده شد (0/05>P). ماهی‌های واکسینه شده به‌طور قابل توجهی تیتر آنتی‌بادی بالاتری علیه این دو جدایه، نسبت به گروه کنترل تولید کردند (0/05>P). شاخص‌های ایمنی غیراختصاصی در گروه‌های واکسینه ‌شده به‌ویژه گروه سه در هفتة پنجم بعد از واکسیناسیون نسبت به گروه کنترل به‌طور معنی‌داری افزایش یافت. نتایج نشان داد که تجویز یک واکسن دو ظرفیتی کشته‌شده می‌تواند به‌طور مؤثری از ماهی باس آسیایی در برابر V. alginolyticus و S. iniae محافظت کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Protection of Asian sea bass (Lates calcarifer) against Vibrio alginolyticus and Streptococcus iniae with killed divalent vaccine

نویسندگان [English]

  • Mina Ahangarzadeh 1
  • Hossein Houshmand 1
  • Seyed Mohammad Jalil Zorriehzahra 2
  • Issa Sharifpour 2
  • Mansour Torfi Mozanzadeh 1
  • Samira Nazemroaya 1
  • Lefteh Mohseninejad 1
  • Abdul Rahim Oosooli 1
  • Shapoor Mehrjooyan 1
  • Seyed Reza Seyed Mortezaei 2
1 South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Ahvaz, Iran.
2 Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Tehran, Iran.
چکیده [English]

This study was aimed to develop and evaluate a killed divalent vaccine against Vibrio alginolyticus and Streptococcus iniae, delivered by intraperitoneal injection in Asian seabass. The fish were divided into three groups with 60 fish in triplicate: I) a control group injected with phosphate-buffered saline (PBS), II) a group vaccinated by divalent vaccine (V. alginolyticus + S. iniae) and III) a group vaccinated with the same divalent vaccine plus an oral booster. Immunological parameters and antibody titer were measured before and at three, five-, and eight-week post-vaccination. The efficacy of the killed vaccine was assessed five weeks post-vaccination by challenging with each isolate separately as well. The vaccinated groups had higher survival rate than control group. The highest relative percentage survival rate, 73.91 and 73.07 ± 3.84% which was observed in group III after challenging with S. iniae and V. alginolyticus, respectively (P < 0.05). The vaccinated fish produced significantly higher antibody titers against these two isolates than the control group (P < 0.05). In the vaccinated groups non-specific immune parameters significantly enhanced, especially in group III, after vaccination, within five weeks was evident in comparison to the control. The results demonstrated that the administration of a killed divalent vaccine can effectively protect Asian seabass against V. alginolyticus, and S. iniae.

کلیدواژه‌ها [English]

  • Antibody titer
  • Asian seabass
  • Killed divalent vaccine
  • Non-specific immune response
  • Survival rate
Abu-Elala, N.M., Samir, A., Wasfy, M., Elsayed, M., 2019. Efficacy of Injectable and Immersion Polyvalent Vaccine against Streptococcal Infections in Broodstock and Offspring of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology 88, 293-300. DOI: 10.1016/j.fsi.2019.02.042.
Ahangarzadeh, M., Houshmand, H., Torfi Mozanzadeh, M., Kakoolaki, S., Nazemroaya, S., Sepahdari, A., Peyghan, R., Ajdari, A., Sadr, A.S., 2023. Effect of killed autogenous polyvalent vaccines against Vibrio harveyi, V. alginolyticus and Streptococcus iniae on survival and immunogenicity of Asian seabass (Lates calcarifer). Fish & Shellfish Immunology 143, 109226. DOI: 10.1016/j.fsi.2023.109226.
Aly, S.M., Eissa, A.E., ElBanna, N.I., Albutti, A., 2021. Efficiency of monovalent and polyvalent Vibrio alginolyticus and Vibrio Parahaemolyticus vaccines on the immune response and protection in gilthead sea bream, Sparus aurata (L.) against vibriosis. Fish & Shellfish Immunology 111, 145-151. DOI: 10.1016/j.fsi.2020.10.011.
Angosto, D., López-Muñoz, A., García-Alcazar, A., Meseguer, J., Sepulcre, M.P., Mulero, V., 2018. Aluminum is a powerful adjuvant in teleost fish despite failing to induce interleukin-1β release. Developmental & Comparative Immunology 85, 18-24. DOI: 10.1016/j.dci.2018.03.017.
Arijo, S., Rico, R., Chabrillon, M., Diaz-Rosales, P., Martínez-Manzanares, E., Balebona, M.C., Magariños, B., Toranzo, A.E., Moriñigo, M.A., 2005. Effectiveness of a divalent vaccine for sole, Solea senegalensis (Kaup), against Vibrio harveyi and Photobacterium damselae subsp. piscicida. Journal of Fish Diseases 28(1), 33-38.DOI: 10.1111/j.1365-2761.2004.00597.x. eng
Bahnasawy, M., El-Bakry, K., El-Safy, M., El-Borsh, D., 2019. Use of vaccines in controlling bacteria fish diseases caused by Vibrio anuiliticus. African Journal of Biological Sciences 15(1), 87-100.DOI: 10.21608/ajbs.2019.64002.
Ballesteros, N.A., Rodriguez Saint-Jean, S., Perez-Prieto, S.I., 2014. Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish & Shellfish Immunology 37(2), 220-228.DOI: 10.1016/j.fsi.2014.02.003.
Bao, P., Sun, X., Liu, Q., Zhang, Y., Liu, X., 2019. Synergistic effect of a combined live Vibrio anguillarum and Edwardsiella piscicida vaccine in turbot. Fish & Shellfish Immunology 88, 84-90. DOI: 10.1016/j.fsi.2019.02.014.
Barta, O., 1993. Veterinary clinical immunology laboratory. Bar-Lab Publishing, Oxford, UK, 350.
Bellos, G., Angelidis, P., Miliou, H., 2015. Effect of temperature and seasonality principal epizootiological risk factor on vibriosis and photobacteriosis outbreaks for european sea bass in greece (1998-2013). Journal of Aquaculture Research & Development 6(5), 338-341. DOI: 10.4172/2155-9546.1000338.
Buller, N.B., 2014. Bacteria and Fungi from Fish and other Aquatic Animals, 2nd Edition: A Practical Identification Manual. CABI, Wallingford, Oxfordshire, 881p.
Cao, J., Zhang, J., Ma, L., Li, L., Zhang, W., Li, J., 2018. Identification of fish source Vibrio alginolyticus and evaluation of its bacterial ghosts vaccine immune effects. Microbiology Open 7(3), e00576. DOI: 10.1002/mbo3.576.
Chettri, J.K., Jaafar, R.M., Skov, J., Kania, P.W., Dalsgaard, I., Buchmann, K., 2015. Booster immersion vaccination using diluted Yersinia ruckeri bacterin confers protection against ERM in rainbow trout. Aquaculture 440, 1-5. DOI: 10.1016/j.aquaculture.2015.01.027.
Chin, Y.K., Al-saari, N., Zulperi, Z., Mohd-Aris, A., Salleh, A., Silvaraj, S., Mohamad, A., Lee, J., Zamri-Saad, M., Ina-Salwany, M.Y., 2020. Efficacy of bath vaccination with a live attenuated Vibrio harveyi against vibriosis in Asian seabass fingerling, Lates calcarifer. Aquaculture Research 51(1), 389-399. DOI: 10.1111/are.14386.
Colquhoun, D.J., Lillehaug, A., 2014. Vaccination against vibriosis, in: R. Gudding, A. Lillehaug, Ø. Evensen (Eds.), Fish vaccination, 1st ed. Wiley-Blackwell, Hoboken, New Jersey, United State, 172-184. DOI: 10.1002/9781118806913.ch15
Dezfuly, Z.T., Alishahi, M., Ghorbanpoor, M., Tabandeh, M.R., Mesbah, M., 2020. Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/nanoparticles in rainbow trout (Oncorhyncus mykiss). Fish & Shellfish Immunology 104, 25-35. DOI: 10.1016/j.fsi.2020.05.029.
Dhar, A.K., Manna, S.K., Thomas Allnutt, F.C., 2014. Viral vaccines for farmed finfish. Virusdisease 25(1), 1-17. DOI: 10.1007/s13337-013-0186-4. eng
El-Jakee, J.K., Marzouk, M.S., Mahmoud, N.A., EL-HADY, M.A. Trials to create Edwardsiellosis native vaccines for freshwater fish in Egypt. In: H. Elghobashy, K. Fitzsimmons, A.S. Diab, eds. 8th International Symposium on tilapia in Aquaculture, October 12-14 2008 Cairo, Egypt. Central Laboratory for Aquaculture Research (CLAR), Egypt: Citeseer, 1143-1155.
Ellis, T., 1990. Lysozyme assays, in: J.S. Stolen, T.C. Fletcher, D.P. Anderson, B.S. Roberson, W.B. Van Muiswinkel (Eds.), Techniques in fish immunology. SOS Publications, Fair Haven, USA, 101-103
FAO, 2020. The State of World Fisheries and Aquaculture, Food and Agriculture Organization. Sustainability in action, Rome, 1-244. DOI: 10.4060/ca9229en
Firdaus-Nawi, M., Yusoff, S.M., Yusof, H., Abdullah, S.-Z., Zamri-Saad, M., 2013. Efficacy of feed-based adjuvant vaccine against Streptococcus agalactiae in Oreochromis spp. in Malaysia. Aquaculture Research 45(1), 87-96. DOI: 10.1111/j.1365-2109.2012.03207.x.
Gudding, R., Van Muiswinkel, W.B., 2013. A history of fish vaccination: Science-based disease prevention in aquaculture. Fish & Shellfish Immunology 35(6), 1683-1688. DOI: 10.1016/j.fsi.2013.09.031.
Halimi, M., Alishahi, M., Abbaspour, M.R., Ghorbanpoor, M., Tabandeh, M.R., 2018. Efficacy of a Eudragit L30D-55 encapsulated oral vaccine containing inactivated bacteria (Lactococcus garvieae/Streptococcus iniae) in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 81, 430-437. DOI: 10.1016/j.fsi.2018.07.048.
Hooshmand, H., Ahangarzadeh, M., Sadat Sadr, A., Nazemroaya, S., Ghorbanpoor, M., Mohammadiyan, T., Kakoolaki, S., AZhdari, A., 2022. Isolation and molecular identification of Vibrio alginolyticus from cultured marine fish in farms located south provinces of Iran. Iranian Scientific Fisheries Journal 31(1), 9-21. DOI: 10.22092/ISFJ.2022.126359. (in Persian)
Ismail, M.S., Syafiq, M.R., Siti-Zahrah, A., Fahmi, S., Shahidan, H., Hanan, Y., Amal, M.N.A., Zamri Saad, M., 2017. The effect of feed-based vaccination on tilapia farm endemic for streptococcosis. Fish & Shellfish Immunology 60, 21-24. DOI: 10.1016/j.fsi.2016.11.040.
Ismail, N.E.D.A., Atta, N.S., Ahmed, A.E.A.M., 2010. Oral Vaccination of Nile Tilapia (Orechromis niloticus) Against Motile Aeromonas Septicaemia. Report and Opinion 2(1), 46-51. DOI: 10.7537/marsroj020110.09.
Ismail, N.I.A., Amal, M.N.A., Shohaimi, S., Saad, M.Z., Abdullah, S.Z., 2016. Associations of water quality and bacteria presence in cage cultured red hybrid tilapia, Oreochromis niloticus×O. mossambicus. Aquaculture Reports 4, 57-65. DOI: 10.1016/j.aqrep.2016.06.004.
Jung, A., Rautenschlein, S., 2020. Development of an in-house ELISA for detection of antibodies against Enterococcus cecorum in Pekin ducks. Avian Pathology : Journal of the W.V.P.A 49(4), 355-360. DOI: 10.1080/03079457.2020.1753653. eng
Klesius, P.H., Shoemaker, C.A., Evans, J.J., 2000. Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus). Aquaculture 188(3), 237-246. DOI: 10.1016/S0044-8486(00)00345-8.
Li, J., Ma, S., Woo, N.Y., 2015. Vaccination of Silver Sea Bream (Sparus sarba) against Vibrio alginolyticus: Protective Evaluation of Different Vaccinating Modalities. International Journal of Molecular Sciences 17(1), 40. DOI: 10.3390/ijms17010040. eng
Lin, H.L., Shiu, Y.L., Chiu, C.S., Huang, S.L., Liu, C.H., 2017. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish & Shellfish Immunology 60, 474-482. DOI: 10.1016/j.fsi.2016.11.026. eng
Liu, S., Li, E., Cai, Y., Wang, S., Ren, Z., Li, Q., Guo, W., Wu, Y., Zhou, Y., 2018. Isolation, identification and pathogenicity characterization of Vibrio ponticus from the golden pompano Trachinotus ovatus. Aquaculture 496, 285-290. DOI: 10.1016/j.aquaculture.2018.04.065.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193(1), 265-275. DOI: 10.1016/S0021-9258(19)52451-6.
Mayo, C., Lee, J., Kopanke, J., MacLachlan, N.J., 2017. A review of potential bluetongue virus vaccine strategies. Veterinary Microbiology 206, 84-90. DOI: 10.1016/j.vetmic.2017.03.015.
Miccoli, A., Saraceni, P.R., Scapigliati, G., 2019. Vaccines and immune protection of principal Mediterranean marine fish species. Fish & Shellfish Immunology 94, 800-809. DOI: 10.1016/j.fsi.2019.09.065.
Mohamad, A., Zamri-Saad, M., Noor Azmai Amal, M., Al-Saari, N., Monir, M.S., Chin, Y.K., Md Yasin, I.-S., 2021. Vaccine Efficacy of a Newly Developed Feed-Based Whole-Cell Polyvalent Vaccine against Vibriosis, Streptococcosis and Motile Aeromonad Septicemia in Asian Seabass, Lates calcarifer. Vaccines 9(4). DOI: 10.3390/vaccines9040368.
Nehlah, R., Firdaus-Nawi, M., Nik-Haiha, N.Y., Karim, M., Zamri-Saad, M., Ina-Salwany, M.Y., 2017. Recombinant vaccine protects juvenile hybrid grouper, Epinephelus fuscoguttatus × Epinephelus lanceolatus, against infection by Vibrio alginolyticus. Aquaculture International 25(6), 2047-2059. DOI:10.1007/s10499-017-0172-8.
Nguyen, H.T., Thu Nguyen, T.T., Tsai, M.-A., Ya-Zhen, E., Wang, P.-C., Chen, S.-C., 2017. A formalin-inactivated vaccine provides good protection against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish & Shellfish Immunology 65, 118-126. DOI: 10.1016/j.fsi.2017.04.008.
Pasaribu, W., Sukenda., S., Nuryati, S., 2018. The Efficacy of Nile Tilapia (Oreochromis niloticus) Broodstock and Larval Immunization against Streptococcus agalactiae and Aeromonas hydrophila. Fishes 3(1), 1-16. DOI: 10.3390/fishes3010016.
Rameshkumar, P., Nazar, A.K.A., Pradeep, M.A., Kalidas, C., Jayakumar, R., Tamilmani, G., Sakthivel, M., Samal, A.K., Sirajudeen, S., Venkatesan, V., Nazeera, B.M., 2017. Isolation and characterization of pathogenic Vibrio alginolyticus from sea cage cultured cobia (Rachycentron canadum (Linnaeus 1766)) in India. Letters in Applied Microbiology 65(5), 423-430. DOI: 10.1111/lam.12800. eng
Sharma, S.R.K., Pradeep, M.A., Sadu, N., Dube, P.N., Vijayan, K.K., 2017. First report of isolation and characterization of Photobacterium damselae subsp. damselae from cage-farmed cobia (Rachycentron canadum). Journal of Ffish Diseases 40(7), 953-958. DOI: 10.1111/jfd.12557. eng
Shoemaker, C.A., LaFrentz, B.R., Klesius, P.H., 2012. Bivalent vaccination of sex reversed hybrid tilapia against Streptococcus iniae and Vibrio vulnificus. Aquaculture 354-355, 45-49. DOI: 10.1016/j.aquaculture.2012.04.033.
Shoemaker, C.A., Lozano, C.A., LaFrentz, B.R., García, J.C., Soto, E., Xu, D.-H., Beck, B.H., Rye, M., 2017. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: Is genetic resistance correlated? Aquaculture 468, 193-198. DOI: 10.1016/j.aquaculture.2016.10.022.
Silva, Y.J., Costa, L., Pereira, C., Mateus, C., Cunha, A., Calado, R., Gomes, N.C., Pardo, M.A., Hernandez, I., Almeida, A., 2014. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One 9(12), e114197. DOI:10.1371/journal.pone.0114197. eng
Siwicki, A., Anderson, D.P., 1993. Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and monocytes, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum, in: A.K. Siwicki, D.P. Anderson, J. Waluga (Eds.), Fish Diseases Diagnosis and Prevention Methods. Wydawnictwo Instytutu Rybactwa Strodladowego, Olsztyn, Poland, 105-111
Spinos, E., Kokkoris, G.D., Bakopoulos, V., 2017. Prevention of sea bass (Dicentrarchus labrax, L. 1758) photobacteriosis and vibriosis. Long term efficacy study of intraperitoneally administered bivalent commercial vaccines. Aquaculture 471, 172-184. DOI: 10.1016/j.aquaculture.2017.01.017.
Toranzo, A.E., Romalde, J.L., Magariños, B., Barja, J.L., 2009. Present and future of aquaculture vaccines against fish bacterial diseases, in: B. Basurco, C. Rogers (Eds.), The use of veterinary drugs and vaccines in Mediterranean aquaculture. Zaragoza: CIHEAM, 155-176
Torres-Corral, Y., Girons, A., González-Barreiro, O., Seoane, R., 2021. Effect of Bivalent Vaccines against Vibrio anguillarum and Aeromonas salmonicida Subspecie achromogenes on Health and Survival of Turbot.  9(8). DOI: 10.3390/vaccines9080906.
Van Khang, P., Van Nha, V., Nguyen, N.H., 2019. Resistance to Streptococcus iniae and its genetic associations with traits of economic importance in Asian seabass (Lates calcarifer). Journal of Fish Diseases 42(12), 1657-1666. DOI: 10.1111/jfd.13092.
Viale, I., Cubadda, C., Angelucci, G., Salati, F., 2006. Immunization of European Sea Bass, Dicentrarchus labrax L. 1758, Fingerlings with a Commercial Vaccine Against Vibriosis. Journal of Applied Aquaculture 18(3), 53-67. DOI: 10.1300/J028v18n03_04.
Woo, P.T.K., Gregory, D.W.B., 2014. Diseases and Disorders of Finfish in Cage Culture, 2nd Edition, illustrated, revised ed. CABI, 354. DOI: 10.1079/9781780642079.0000