امکان تعیین جنسیت قزل آلای رنگین کمان (Oncorhynchus mykiss) با استفاده از نشانگرهای ملکولی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانش‌آموختۀ کارشناسی ارشد مهندسی شیلات، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

 





چکیده






این تحقیق با هدف بررسی امکان تعیین جنسیت ماهی قزل‌آلای رنگین‌کمان از طریق غربالگری مولکولی به منظور ایجاد جمعیت‌های تک‌جنسیت انجام شد. بدین منظور تعداد 35 نمونه از بافت بالة دمی ماهیان بالغ قزل‌آلای رنگین‌کمان بازار کرج، به‌منزلة نمونة آماری، تهیه شد و پس از استخراج DNA از نمونه‌ها، تکثیر جایگاه نشانگرها انجام پذیرفت. واکنش زنجیره‌ای پلیمراز برای تکثیر نشانگرهای وابسته به جنسیت در ماهیان قزل‌آلای رنگین‌کمان بر اساس دو نشانگر OmyFA و OmyFATU تنظیم شد. در نهایت جمعیت مذکور بر اساس حضور یا نبود باندی مخصوص به جنسیت برای نشانگرها غربالگری شد. نتایج این پژوهش حضور نشانگرهای OmyFA و OmyFATU در یک جنسیت (نر) را با دقت 100 و 55 درصد گزارش کردند. بر اساس این نتایج نشانگر OmyFA برای غربال نمونة آماری مذکور (قزل‌آلای رنگین‌کمان بازار کرج) پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigate the possibility of Sex determination of rainbow trout (Oncorhynchus mykiss) using molecular markers

نویسندگان [English]

  • Hamid Farahmand 1
  • Mohammad Akhavan Bahabadi 2
  • Mohammad ali Nematollahi 1
  • Aliraza Mirvaghefi 1
1 Associate Professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
2 MSC in Fisheries Engineering, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
چکیده [English]

The study investigates the possibility of sex determination of rainbow trout (Oncorhynchus mykiss)
using molecular screen for products monosex of populations. 35 caudal fin tissue samples were
obtained from Karaj Rainbow trout mature population and then genomic DNA was extracted and
marker loci amplified. Polymerase chain reaction (PCR) was setup based on two omyFA and
OmyFATU markers for amplification of sex linked markers in rainbow trout. Finally, the population
was screened based on presence of a specific band for both markers. Result of this expriments showed
that presence of omyFA and OmyFATU markers in males were %100 and %55 respectively. Acording
to the result omyFATU is proper marker for screen of karaj trout population.

کلیدواژه‌ها [English]

  • monosex culture
  • Rainbow trout
  • sex-associated markers
  • sex determination
  • sex differentiation
[1]. Abdolhay, H., 2005. Comprehensive study of molecular genetic and selective breeding in coldwater fish of Iran. Iranian Fisheries Research Organization. project number: 796.

[2]. Allendorf, F.W., Gellman, W.A., Thorgaard G.H., 1994. Sex-linkage of two enzyme loci in Oncorhynchus mykiss. Heredity 72, 498–507.

[3]. Baroiller, J.F., D’Cotta, H., 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 30(4), 399–409.

[4]. Brunelli, J.P., Thorgaard, G.H., 2004. A new Y-chromosome- specific marker for the Pacific salmon. Transactions of the American Fisheries Society 10247–10253.

[5]. Brunelli, J.P., Wertzler K.J., Sundin, K., Thorgaard, G,H.,2008. Y-specific sequences and polymorphisms in rainbow trout and Chinook salmon. Genome 51, 739–748.

[6]. Bull, J.J.,1983. Evolution of Sex Determining Mechanisms Benjamin/Cummings. Menlo Park. CA, 316 pp.

[7]. Chen, J., Fu, Y., Xiang, D., Zhao, G., Long, H., Liu, J., Yu, Q., 2008. XX/XY heteromorphic sex chromosome systems in two bullhead catfish species, Liobagrus marginatus and L. styani (Amblycipitidae, Siluriformes). Cytogenetic and Genome Research 122(2), 169–174.

[8]. Colihueque, N., Iturra, P., Estay, F., Diaz, N.F., 2001. Diploid chromosome number variations and sex chromosome polymorphism in five cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 198, 63–77.

[9]. Cnaani, A., Levavi-Sivan, B., 2009. Sexual Development in Fish, Practical Applications for Aquaculture. Sexual Development 3, 164–175.

[10].    Craig, J.K., Foote, C.J., Wood, C.C.,1996. Evidence for temperature- dependent sex determination in sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 53, 141–147.

[11].    Devlin, R.H., NcNeil, B.K., Groves, T.D.D., Donaldson, E.M., 1991. Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 48, 1606–1612.

[12].    Devlin, R.H., McNeil, B.K., Groves, T.D.D., Donaldson, E.M., 1994. Isolation of Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 48, 1606–1612.

[13].    Devlin, R.H., Stone, G.W Smailus, D.E., 1998. Extensive direct tandem organization of a long repeat DNA sequence on the Y-chromosome of Chinook salmon (Oncorhynchus tshawytscha). Journal of Molecular Evolution 46, 277–287.

[14].    Devlin, R.H., Biagi, C.A., Smailus, D.E., 2001. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica 111, 43–58.

[15].         Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.

[16].    Devlin, R.H., Park, L., Sakhrani, D.M., Baker, J.D Marshall, A.R., 2005. Variation of Y-chromosome DNA markers in Chinook salmon (Oncorhynchus tshawytscha) populations. Canadian Journal of Fisheries and Aquatic Sciences 62, 1386–1399.

[17].    Davidson, W.S., Huang, K., Fujiki, T.K., von Schalburg, K.R., Koop, B.F., 2009. The sex determining loci and sex chromosomes in the family Salmonidae. Sexual Development 3,78–87.

[18].    Dunham, R.A., Majumdar, K., Hallerman, E., Bartley, D., Mair, G., et al., 2001. Review of the status of aquaculture genetics. In: Subasinghe, R.P., Bueno, P., Phillips, M.J., Hough, C., McGladdery, S.E., Arthur, J.R. (eds.), Aquaculture in the Third Millennium. Pp. 137–166 (NACA and FAO, Bangkok 2001).

[19].    Dunham, R.A., 2004. Aquaculture and fisheries biotechnology, genetic approaches (CABI Publishing,Wallingford).

[20].    Du, S.J., Devlin, R.H., Hew, C.L., 1993. Genomic structure of growth hormone genes in chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes GH-I and GH-II, and a male-specific pseudogene, GH-psi. DNA Cell Biology 12, 739–751.

[21].    Felip, A., Fujiwara, A., Young, W.P., Wheeler, P.A., Noakes, M., et al., 2004. Polymorphism and differentiation of rainbow trout Y-chromosomes. Genome 47, 1105–1113.

[22].    Felip, A., Young, W.P., Wheeler, P.A., Thorgaard, G.H., 2005. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture 247, 35-43.

[23].    Forbes, S.H., Knudsen, K.L., North, T.W., Allendorf, F.W., 1994. One of two growth hormone genes in coho salmon is sex linked. Proceedings of the National Academy of Sciences of the United States of America 91, 1628–1631.

[24].    Fukada, S., Tanaka, M., Iwaya, M., Nakajima, M., Nagahama, Y., 1995.  The Sox gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Development Growth and Differentiation 37, 379–385.

[25].    Galay-Burgos, M., Llewellyn, L., Mylonas, C. C., Canario, A. V. M., Zanuy, S., and Sweeney, G. E., 2003. Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part B 137, 279- 284.

[26].    Husebye, H., Lund, S., Moeller, M., Sunde, A., Krokan, H.E., 1994.  A Bkm-related DNA sequence gives individual DNA fingerprints in turbot (Scophthalmus maximus), but neither Bkm-related, human SRY or human ZFY probes detect genetic sex differences. Comparative Biochemistry and Physiology Part B 107B, 69–73.

[27].    Iturra, P., Medrano, J.F., Bagley, M., Lam, N., Vergara, N., Marin, J.C., 1998. Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica 101, 209–213.

[28].    Iturra, P., Lam, N., delaFuente, M., Vergara, N., 2001a.  Characterization of sex chromosomes in rainbow trout and coho salmon using fluorescence in situ hybridization (FISH). Genetica 11, 1125–131.

[29].    Iturra, P., Bagley, M., Vergara, N., Imbert, P.,  Medrano, J.F., 2001b.  Development and characterization of DNA sequence OmyP9 associated with the sex chromosomes in rainbow trout. Heredity 86, 412–419.

[30].    Lutz, C.G., 2001. Practical Genetics for Aquaculture (Blackwell, Oxford).

[31].    Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., Hori H., Hamaguchi, S., Sakaizumi, M., 2002.  DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.

[32].    Matsuda, M., Sato, T., Toyazaki, Y., Nagahama, Y., Hamaguchi, S., Sakaizumi, M., 2003. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zoological Science 20, 159–161.

[33].    May, B., Johnson, K.R., Wright, J.r., J.E., 1989. Sex linkage in salmonids: Evidence from a hybridized genome of brook trout and Arctic charr. Biochemical Genetics 27, 291–301.

[34].    Nakamura, M., Kobayashi, T., Chang, X.T., Nagahama, Y., 1998. Gonadal sex differentiation in teleost fish. Journal of Experimental Biology 281, 362–372.

[35].    Nagler, J.J., Bouma, J., Thorgaard, G.H., Duable, D.D., 2001. High incidence of a male-specific genetic marker in phenotypic female chinook salmon from the Columbia River. Environmental Health Perspectives 109, 67–69.

[36].    Nichols, K.M., Young, W.P., Danzmann, R.G., Robison, B.D Rexroad, C., 2003. A consolidated linkage map for  rainbow trout (Oncorhynchus mykiss). Animal Genetics 34, 102–115.

[37].    Ocalewicz, K., Babiak, L., Kasprzycka, B., Dobosz, S., Kuzminski, H Goryczko, K., 2007.  Occurrence of two forms of Y chromosome in rainbow trout (Oncorhynchus mykiss) males from Rutki strain. Aquaculture 270, 546-551.

[38].    Parsons, J. E., Thorgaard, G. H., 1985. Production of androgenetic diploid rainbow trout. journal of Heredity76, 177-181.

[39].    Phillips, R.B., Rab, P., 2001. Chromosome evolution in the Salmonidae (Pisces): an update. Biological Reviews 76, 1–25.

[40].    Sakamoto, T., Danzmann, R.G., Gharbi, K., Howard, P., Oxaki, A., 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155, 1331–1345.

[41].    Sambrookm, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning: laboratory manual. 2nd ed. Cold Spring Harbor laboratory Press, Cold Spring Harbor, N. Y.

[42].    Scutt, C.P., Kamisugi, Y., Sakai, F., Gilmartin, P.M., 1997. Laser isolation of plant sex chromosomes: studies on the DNA composition of the X and Y sex chromosomes of Silene latifolia. Genome 40, 705–715.

[43].    Shibata, F., Hizume, M., Kuroki, Y., 1999. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108, 266–270.

[44].    Singh, L., Panicker Shirly, G.,  Nagaraj, R., Majumdar Kshitish C., 1994. Banded krait minor-satellite (Bkm)-associated Y chromosome-specific repetitive DNA in mouse. Nucleic Acids Research22, 2289–2295.

[45].    Thorgaard, G.H., 1977. Heteromorphic sex chromosomes in male rainbow trout. Science 196, 900– 902.

[46].    Thorgaard, G.H., 1983. Chromosomal differences among rainbow trout populations. Copeia 650–662.

[47].    Thorgaard, G.H., Bailey, G.S., Williams, D., Buhler, D.R., Kaattari, S.L., 2002. Status and opportunities for genomics research with rainbow trout. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 133, 609–646.

[48].    Tiersch, T.R., Simco, B.A., Davis, K.B., Wachtel, S.S., 1992. Molecular genetics of sex determination in channel catfish: studies on SRY, ZFY, Bkm, and human telomeric repeats. Biology Reproduction 47, 185– 192.

[49].    Tilford, C.A., Tomoko, K.-K., Skaletsky, H., Rozen, S., Brown, L.G., Rosenberg, M., McPherson, J.D., Wylie, K., Sekhon, M., Kucaba, T.A., Waterston R.H., Page D.C., 2001. A physical map of the human Y chromosome. Nature 409, 943–945.

[50].    Ueda, T., Ojima, Y., 1984. Sex chromosomes in the kokanee salmon, Oncorhynchus nerka. Bulletin of the Japanese Society of Scientific Fisheries 50, 1495–1498.

[51].    Volff, J.N., Schartl, M., 2001. Variability of genetic sex determination in poeciliid fishes. Genetica 111(1–3), 101–110.

[52].    Wachtel, S., Demas, S., Tiersch, T., Pechan, P., Shapiro, D., 1991. Bkm satellite DNA and ZFY in the coral reef fish Anthias squamipinnis. Genome 34, 612– 617.

[53].    Williamson, K.S., May, B., 2002.  Incidence of phenotypic female chinook salmon positive for the male Y-chromosome specific marker OtY1 in the Central Valley, California. Journal Aquatic Animal Health 14, 175–183.

[54].    Woram, R.A., Gharbi, K., Danzmann, R.G., Sakamoto, T., Hoyheim, B., 2003. Comparative genome analysis of the primary sex determining locus in salmonid fishes. Genome Research 13, 272–280.

[55].    Young, W.P., Wheeler, P.A., Coryell, V.H., Leim, P., Thorgaard, G.H., 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics148, 839–850.

[56].    Yamamoto, T., 1969. Sex differentiation. In: Hoar, W., Randall, D. (Eds.), Fish Physiology. Academic Press, pp. 117– 175.

[57].    Zhang, Q., Nakayama, I., Fujiwara, A., Kobayashi, T., Oohara, I., Masaoka, T., Kitamura, S., Devlin, R.H., 2001. Sex identification by male-specific growth hormone pseudogene (GH-Ψ) in Oncorhynchus masou complex and a related hybrid. Genetica 111, 111–118.