تأثیر غذایی روتیفر غنی شده با جلبک‌های میکروسکوپی بر شاخص‌های رشد، بازماندگی و کیفیت لاشۀ لارو ماهی قزل‌آلای رنگین کمان (Oncorhynchus mykiss)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 استاد گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشیارگروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

پژوهش حاضر با هدف غنی­سازی روتیفر با جلبک‌های میکروسکوپی به منظور تأثیر غذایی آن بر شاخص‌های رشد و افزایش بازماندگی لارو قزل‌آلای رنگین‌کمان انجام گردید. در راستای انجام این بررسی از ﺟﻠﺒﻚ­ﻫﺎی کلرلا((Chlorella vulgaris و جلبک سندسموس
(Scenedesmus quadricauda) جهت تغذیه روتیفر Brachionus plicatilis استفاده شد. تراکم سلول‌های جلبک جهت تغذیه روتیفر 107× 5 سلول در میلی­لیتر بود. در هر مخزن 60 لیتری تعداد 30 قطعه ماهی قزل‌آلای رنگین‌کمان (Oncorhynchus mykiss) ذخیره گردید. تغذیه لارو‌های ماهی قزل‌آلای رنگین‌کمان به ترتیب در تیمار 1 با روتیفر غنی­شده با جلبک کلرلا، در تیمار 2 با روتیفر غنی­شده با جلبک سندسموس و در تیمار 3 با روتیفر غنی­شده با ترکیبی از جلبک‌های کلرلا و سندسموس (به نسبت 50 درصد) انجام شد. تغذیه لارو­ها در گروه شاهد با استفاده از غذای تجاری انجام گردید. حداقل میانگین (± انحراف معیار) وزن لارو در روز 14 و 21 در گروه شاهد به ترتیب به مقدار51/2± 66/409 و 93/4 ± 66/594 میلی­گرم و حداکثر وزن در روز 21 در تیمار 3 به میزان50/7 ± 33/694 میلی­گرم بود. در بررسی­های آماری، شاخص‌های نرخ رشد ویژه، نرخ تبدیل غذایی، نرخ کارایی پروتئین و نرخ بقاء نیز در تیمار‌های 1، 2 و 3 دارای اختلاف معنی­دار بودند (05/0P<). نتایج حاصل از بررسی بیو شیمیایی لاشۀ لارو ماهی قزل‌آلای رنگین‌کمان در روز 21 حاکی از تفاوت معنی­دار در شاخص‌های پروتئین خام و چربی خام در تیمار‌های 1 و 3 بود (05/0P<). نتایج این آزمایش نشان داد که با استفاده از روتیفر غنی شده با جلبک کلرلا و ترکیب جلبک‌های کلرلا و سندسموس می‌توان شاخص‌های رشد و بقاء لاروهای ماهی قزل‌آلای رنگین‌کمان را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of using rotifers enriched with microscopic algae on growth indices, survival and quality of rainbow trout body (Oncorhynchus mykiss)

نویسندگان [English]

  • Erfan Salamroodi 1
  • Gholamreza Rafiee 2
  • Kamran Rezaei Tavabe 3
1 Ph.D. Student, Department of Fisheries,, Faculty of Natural Resources,,University of Tehran, Karaj, Iran.
2 Professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 Associate professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

The aim of this study was to enrich the rotifer with microscopic algae as a feed in order to investigate their effects on growth indices and survival rates of rainbow trout larvae. For this purpose, Chlorella vulgaris and Scenedesmus quadricauda were used as foods, separately and together, for feeding the rotifer Brachionus plicatilis. In treatment 1, the larvae fed the enriched rotifers with chlorella, in treatment 2 fed the enriched rotifers with Scenedesmus algae and in treatment 3, fed the enriched rotifers with a combination of chlorella and Scenedesmus (50%). The control was performed using commercial feed. The density of algae cells per milliliter of water kept at 10 × 107 cells in each medium. In each experimental unite, a 60 liter of fish tank, 30 rainbow trout (Oncorhynchus mykiss) were stored. The mean (± SD) larvae weight reached to 409.66 ± 2.51 and 594.66 ± 4.93 mg on days 14 and 21 in the control group and the maximum weight was 694.33 ± 7.50 mg on day 21 in treatment 3. The specific growth, feed conversion ratio and protein efficiency and survival rates were also significantly different among treatments 1, 2 and 3 (P <0.05). The body composition analysis showed significant (P <0.05) differences in crude protein and crude fat indices in treatments 1 and 3 on day 21. The results of this experiment showed that the enriched rotifers with Chlorella and a combination of Chlorella and Scenedesmus could significantly improve the growth and survival indices in Larvae of Rain bow trout.
.

کلیدواژه‌ها [English]

  • Rotifer
  • Chlorella
  • Scenedesmus
  • Larvae
  • Rainbow trout
Ahlgren, G., Inga-Britt, G., Boberg, M., 1992. Fatty acid content and chemical composition of freshwater microalgae. Journal of Phycology 28(-), 37-50.
Ale, M.T., Mikkelsen, J.D., Meyer, A.S., 2011. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation. Journal of Applied Phycology 23(3), 345-351.
AOAC, 1990. Official method of analysis of Association of Official Analitical Chemist. Vol. 1, 15th ed. Assoc. Official Analytical Chemist, Washington.
Awaiss, A., Kestemont, P., 2009. Feeding sequences (rotifer and dry diet), survival, growth and biochemical composition of African cat fish, Clarias garieptinus. Aquaculture Research 29(-), 731-741.
Azevedo P.A., Leeson S., Cho C.Y., Bureau D.P., 2004. Growth and feed utilization of large size rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) reared in freshwater: diet and species effects, and responses over time. Aquaculture Nutrition 10(6), 401-411.
Belasco, W., 1997. Algae burgers for a hungry world the rise and fall of Chlorella cuisine. Technology and culture, 608-634.
Ben-Amotz, A., Fishler, R., Schneller, A., 1987. Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Marine Biology 95, 31-36.
Boehlert, G.W., Yoklavich, M.M., 1984. Carbon assimilation as a function of ingestion rate in larval pacific herring, Clupea harengus pallasi. Journal of Biology 79, 251-262.
Borowitzka, M.A., Borowitzka, L.J., 1988. Micro-Algal Biotechnology. Cambridge University Press, London, UK.
Brown, M., Jeffrey, S., Volkman, J., Dunstan, G., 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151, 315-331.
Carić, M., Sanko-Njire, J., Skaramuca, B., 1993. Dietary effects of different feeds on the biochemical composition of the rotifer (Brachionus plicatilis Müller). Aquaculture 110, 141-150.
Cho, C.Y. and Cowey, C.B., 1991, Rainbow trout Oncorhynchus mykiss. In: Wilson, R.P (ed.) Handbook of Nutrient Requirement of Finfish. CRC Press, Boca Reation 131-143.
Cho, S.H., Jo, H., 2005.  Effect of enriched live feeds on survival and growth rates in larval Korean rock fish, Sebastes sehlegeli hilgendorf. Aquaculture Research 32, 192-208.
Doohan, M., 2012. An energy bud gets for adult, Brachionus plicatilisJournal of Oceanography 13, 351-362.
Fenchen, J., 2005. Commercial production of micro algae and rotifer culture in China. Aquaculture 39, 54-63.
Fernández-Reiriz, M.J., Labarta, U., Ferreiro, M., 1993. Effects of commercial enrichment diets on the nutritional value of the rotifer (Brachionus plicatilis). Aquaculture 112, 195-206.
Flores‐Burgos J., Sarma S.s.s., Nandini, S.S., 2003. Population Growth of Zooplankton (Rotifers and Cladocerans) Fed Chlorella vulgaris and Scenedesmus acutus in Different Proportions. Acta hydrochimica et hydrobiologica 31(3), 240-248.
Frolov, A., Pankov, S., 1992. The effect of starvation on the biochemical composition of the rotifer Brachionus plicatilis. Journal of the Marine Biological Association of the United Kingdom 72, 343-356.
Fukusho, K., 2010. Review of the research status of Zooplankton production Japan. Journal of Aquaculture and Fisheries Technology, 2, 232-240.
Ghosh, K., Sen, S. K., Ray, A. K., 2003. Supplementation of an isolated fish gut bacterium, bacillus circulans, in Formulated diets for Rohu, Labeo rohita, Fingerlings. Bamidgeh 55(1), 13-21.
Hebb, C.D., Castell, J.D., Anderson, D.M., Batt, J., 2003. Growth and feed conversion of juvenile winter flounder (Pleuronectes americanus) in relation to different proteinto-lipid levels in isocaloric diets, Aquaculture 221(1), 439 - 449.
Herzing, A., 1987. The analysis of planktonic rotifer population: A plea for long term investigation. Hydrobiologia147, 163-180.
Horn, W.,1981. Phytoplankton grazing in the drinking water reservoir. Int. Rev Ges. Hydrobiology 66, 787 – 810.
Hunter, J.R., Kimbrell, C.M., 1980. Early life history of pacific mackerels, Scomber japonicus. Fishery Bulletin 78, 98-102.
Indy, J.R., Yasui, H., Rodríguez, L.A., González, C.A.Á., Sánchez, W.M.C., 2014. Seaweed: for food, medicine and industry. Kuxulkab' 16 (29).
Işik, O., Sarihan, E., Kuşvuran E., Gül Ö., Erbatur, O., 1999. Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174(3–4), 299-311.
Jensen, Th. C., Verschoor, A. M., 2004. Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshwater Biology 49(9), 1138-1151.
Kanazawa, A., Teshima, S.-I., Ono, K., 1979. Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comparative Biochemistry and Physiology 63B, 295-298.
Kitabayashi K., Kurata H., Shudo K., Nakamura K., Ishikawa S., 1971. Studies of formula feed fokuruma prawn: I. On the relationship among glucosamine, phosphorus and calcium. Bulletin of Tokai Regional Fisheries Research Laboratory 65, 91-107.
Kolkovski S., 2001. Digestive enzymes in fish larvae and juveniles - Implications and applications to formulated diets. Aquaculture 200 (1), 181-201.
Kraul, S., Nelson, A., Brittain, K., Ako, H., Ogasawara, A., 2010. Evaluation of live feeds for larval and post larval mahimahi, Coryphaena hippurus. Journal of the World Aquaculture Society 23, 299–307.
Lennard, W.E., Leonard, B.V., 2006. A Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquaculture International 14 (6), 539-550.
Lovell, T., 1993. Nutrition and feeding of fish. Published by Van Nostrand Reinhold. New York. 185-203.
Lubzens, E., 1989. Possible use of rotifers resting eggs and preserved live rotifer, Brachionus plicatilis, in aquaculture. Aquaculture 1, 741-750.
Lubzens, E., Marko, A., Tietz, A., 1985. De novosynthesis of fatty acids in the rotifer, Brachionus plicatilis. Aquaculture 47, 27-37.
Lucía-Pavón, Sarma S.s.s., Nandini, S.S., 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Revista de Biología Tropical 49(3-4), 895-902.
MacArtain, P M., Gill C.I.R., Brooks M., Campbell R., Rowl, I.R., 2007. Nutritional value of edible seaweeds. Nutrition reviews 65(12), 535-543.
Makridis, P., Olsen, Y., 1999. Protein depletion of the rotifer Brachionus plicatilis during starvation. Aquaculture 174, 343-353.
Martin Creuzburg D. and Von Elert E., 2004. Impact of 10 dietary sterols on growth and reproduction of Daphnia galeata. Journal of Chemical Ecology 30, 483-500.
Martinez, M.P., and Chakroff, J.B.P., 1975. Direct phytoplankton counting technique using the hemacytometer. Philippine Agricultural Scientist 59, 43-50.
Mohler J.W., King M.K., Farrell P.R., 2000.  Growth and survival of first-feeding and fingerling Atlantic Sturgeon under culture conditions. Journal of Aquaculture 62, 174-183.
Morten, V., Torodd, Y., Gunvor, I., 2007.  Automatic measurement of rotifer, Brachionus plicatilis, densities in first feeding tanks. Aquacultural Engineering 36, 115–121.
Moustafa, Y.T., Saeed, S.M., 2014 Nutritional evaluation of green macroalgae, Ulva sp. and related water nutrients in the Southern Mediterranean Sea coast, Alexandria shore, Egypt. 4th Conference of Central Laboratory for Aquaculture Research, 35-55.
Rainuzzo, J.R., Olsen, Y., Rosenlund, G., 1989. The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture 79, 157-161.
Ravet J.L., Brett M.T. and Muller-Navarra D.C., 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnology and Oceanography 48(5), 1938-1947.
Sarma,   S.S.S.,   1991,   Rotifers   and   aquaculture   (Review). Environment and Ecology 9 (2), 414-428.
Sarma, S., Rao, T.R., 1991. The Combined Effects of Food and Temperature on the Life History Parameters of Brachionus patulus MULLER (Rotifera). Internationale Revue der Gesamten Hydrobiologie und Hydrographie 76, 225-239.
Scott, A.P., Baynes, S.M., 1978. Effect of algal diet and temperature on the biochemical composition of the rotifer, Brachionus plicatilis. Aquaculture 14, 247-260.
Torrecillas S., Makol A., Caballero M.J., Montero D., Gines R., Sweetman J. and zquierdo M.S., 2011. Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquaculture Nutrition 17, 223-233.
Von Elert E., 2002. Determination of limiting polyunsaturated fatty acid in Daphnia galeta using a new method enriches food algae with single fatty acid. Limnology and Oceanography 47(6), 1764-1773.
Von Elert E., 2002. Determination of limiting polyunsaturated fatty acid in Daphnia galeta using a new method enriches food algae with single fatty acid. Limnology and Oceanography 47(6), 1764-1773.
Wandermeeren, T., Olsen, R.E., Hamre, K., Fyhn, H.J., 2008. Biochemical composition of rotifer for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274, 375-397.
Wang, X., Kim, K.W., Bai, S.C., Huh, M.D., Cho, B.Y., 2005.  Effect of the different levels of dietary vitamin C on growth and issue ascorbic acid changes in parrot fish oplegnathus fasciattuse. Aquaculture 20, 203-211.
Watanabe, T., Kitajima, C., Fujita, S., 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34, 115-143.
Sherrington,  N.A.,  2013.Ulva  lactucaL.     as     an     inorganic     extractive component    for    Integrated multi-trophic aquaculture in British Columbia: An analysis of potentialities    and    pitfalls.    MSc. Thesis.      University   of   Liverpool John Moores University.  Department of Geography.137P.
Wetzel, R.G., 1983. Limnology. 2nd Edition. CBS College publishing, Philadelphia, USA. PP: 125-320.
Yufera, M., Darias, M.J., 2007. The consent of exogenous feeding in marine fish larvae. Aquaculture 268, 53-63.