امکان‌سنجی استفاده از سامانة داده‌های دورسنجی در تعیین الگوهای پراکنش زمانی و مکانی ماهی تون گیدر (Thunnus albacares) در دریای عمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشدبوم شناسی آبزیان شیلاتی،گروه شیلات، دانشکده محیط زیست کرج، کرج، ایران

2 دانشیار گروه ارزیابی و مخاطرات محیط زیستی، پژوهشکده محیط زیست و توسعه پایدار، سازمان حفاظت محیط زیست، تهران، ایران

3 استادیار گروه علوم محیط دریا، دانشکده محیط زیست کرج، کرج، ایران

4 دانشیار موسسه تحقیقات علوم شیلاتی، سازمان آموزش، تحقیقات و ترویج کشاورزی، تهران، ایران

10.22059/jfisheries.2022.332195.1285

چکیده

اکثر ماهیگیران از روش­ های سنتی برای شناسایی مناطق دارای پتانسیل ماهیگیری استفاده می ­کنند. افزایش تقاضا برای ماهی و نیاز به بهره­ برداری منابع دریایی به‌شیوة مقرون به صرفه و کاهش فعالیت­ های انسانی، معرفی و کاربرد روش­ های جدید را به ملاحظات مهمی تبدیل کرده است. استفاده از سنجش از دور در ماهیگیری منجر به صید موفقیت‌آمیز و کاهش هزینه­ های ماهیگیری و فعالیت­ های انسانی می­ گردد. در این تحقیق سعی شد با استفاده از سامانة دورسنجی، پراکنش ماهی­ گیدر در دریای عمان شناسایی و نقشة احتمال حضور آن ­ها ترسیم شود. بدین‌منظور، الگوهای پراکنش ماهیان تون از طریق داده ­های ماهیگیری و داده‌های ماهانه دورسنجی (دمای آب، کلروفیل-a، ارتفاع از سطح دریا، شوری و سرعت باد) برای سال‌های 2016 و 2017 (1395 و 1396) در دریای عمان با استفاده از سیستم اطلاعات جغرافیایی و ارزیابی چند‌معیاره، مورد بررسی قرار گرفت. نتایج نشان داد، استفاده از داده ­های دورسنجی برای تعیین الگوهای پراکنش زمانی و مکانی ماهی گیدر بیش از 70 درصد دقت دارد. با بررسی خروجی نقشة پراکنش صید و داده‌های آزمون، مشخص شد که مدل ارائه شده از توان مطلوبی جهت شناسایی مناطق دارای پتانسیل ماهیگیری تون گیدر برخوردار است. بر این اساس می­ توان اشاره نمود که داده‌های دورسنجی می تواند مناطق دارای پتانسیل ماهیگیری را با حداقل خطا نشان دهد. از این‌رو در مطالعات آتی پیشنهاد می­ گردد برای مکان‌ یابی صید و راهنمایی صیادان از داده­ های دورسنجی استفاده شود. همچنین نتایج این پژوهش م ی­تواند به مدیران شیلات برای مدیریت ماهیگیری بر پایة اکوسیستم و کاهش تلاش ماهیگیری در ماهی‌یابی کمک ­کند.

کلیدواژه‌ها


عنوان مقاله [English]

The feasible study of spatial and temporal distribution patterns of Yellowfin tuna (Thunnus albacares) in the Oman Sea using Remote Sensing Data

نویسندگان [English]

  • Nilofar Ensafi 1
  • Behzad Rayegani 2
  • Behzad Saeedpour 3
  • Farhad Kaymaram 4
1 Master of Fisheries Aquatic Ecology, Department of Fisheries, College of Environment, Karaj, Iran
2 Associate Professor, Assessment and Environment Risks Department, Research Center of Environment and Sustainable Development, Tehran, Iran
3 Assistant Professor, Department of Marine Environmental Sciences, College of Environment, Karaj, Iran
4 Associate Professor, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Most fishermen use traditional methods to identify areas with fishing potential. Increasing demand for fish and the need to exploit marine resources in a cost-effective manner and reduce human activities have made the introduction and application of new methods important considerations. The use of remote sensing in fishing leads to successful fishing and reduces the cost of fishing and human activities. In this research, we have tried to identify the distribution of Yellowfin tuna in the Oman Sea using Remotely Sensed system and draw a map of their possible presence. For this purpose, the distribution patterns of tuna fishes were studied through catch data and monthly remotely sensed data (sea surface temperature, chlorophyll-a, sea surface heights, salinity and wind speed) for the years 2016 and 2017 in the Oman Sea using GIS and multi-criteria evaluation. The results showed use of remotely sensed data to determine the spatial and temporal distribution patterns of Yellowfin tuna is more than 70% accurate. By studying, the output of the catch distribution map and the test data was determined the proposed model is of optimal power for identifying Yellowfin tuna. On this basis, it can be mentioned that remotely sensed data could show potential fishing zone with a least error. Therefore, in future studies, the use of remotely sensed data for location of fishing and fishermen guidance is suggested, Also the results of this research could help fishery managers to ecosystem fisheries based on management and reducing the fishing effort for fish finding.

کلیدواژه‌ها [English]

  • Yellowfin tuna
  • Remotely Sensed Data
  • GIS
  • Multi-Criteria Evaluation
  • Oman Sea
Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., Irigoien, X., Santiago, J., Murua, H., Fraile, I., Chifflet, M., Goikotxea, N., Sagarminaga, Y., Aumont, O., Bopp, L., Herrera, M., Fromentin, J., Bonhomeau, S., 2015. Global Habitat Preferences of Commercially Valuable Tuna. Deep Sea Research Part II: Topical Studies in Oceanography 113, 102-112.
Azadbaksh, A., Aghir, M., Arghang, B., Afraii, M., Eliasi, F., Ostad Mohammadi, H., Iranpur, M., Ebrahimi, M., Asgharnia, M., Esmaeili, A., Yasemi, M., 2015. Assess Reserves and Provide Management Solutions for Sustainable Exploitation of Aquatic Resources. Agricultural Research, Education and Extension Organization. Iranian Fisherise Science Research Institute. 79 p. (In Persian)
Bahrami Nejad, M., Rayegani, B., Jahani, A., Nezami, B., 2018. Proposing an Early-Warning System for Optimal Management of Protected Areas (Case Study: Darmiyan Protected Area, Eastern Iran). Journal of Geography and Environmental Hazards 7(26), 75-94. (In Persian)
Brewington, L., Frizzelle, B., Walsh, S., Mena, C., Sampedro, C., 2014. Remote Sensing of the Marine Environment Challenges and Opportunities in the Galapagos Islands of Ecuador. In: Denkinger, J., Vinueza, L. (Eds.), the Galapagos Marine Reserve, Social and Ecological Interactions in the Galapagos Islands. Springer Science, New York. pp. 109-136.
Copernicus Marine Service, 2017. Available from http://marine.copernicus.eu. Accessed 26th February 2017
Darvishsefat, A., Pir Bavaghar, M., 2012. Applied GIS. Iranian Students Booking Agency. 236 p. (In Persian)
Davies, TK., Mees, C., and Gulland, E., 2014. Modelling the Spatial Behaviour of a Tropical Tuna Purse Seine Fleet. PLoS ONE 9(12), 1-18.
Estoque, R., 2011. GIS-Based Multi-Criteria Decision Analysis (in Natural Resource Management). Division of Spatial Information Science.
Feng, B., 2003. Preliminary Study on relationship between hooking rate of bigeye tuna longline fisheries and environmental factors in the Indian Ocean (in Chinese with English abstract), M.D Thesis, Shanghai Fishery University, Shanghai, China.
Gillett, R., 2011. Bycatch in Small-Scale Tuna Fisheries. FAO, Italy. 132 p.
Hosseini, S.A., Kaymaram, F., Darvishi, M., Parafkandeh, F., 2014. Estimates of Length-Based Population Parameters of Yellowfin Tuna (Thunnus albacares) in the Oman Sea. Turkish Journal of Fisheries and Aquatic Sciences 14(1), 101-111. (In Persian)
Haghi, A., 2021. Distribution Modeling of Bigeye Tuna (Thunnus obesus Lowe, 1839), Using Satellite Derived Environmental Variables in Indian Ocean, Applied Ecology 9(4), 1-14. (In Persian)
Haghi, A., Ghorbani, R., Peighambari, S., Lee, M., Kaplan, D., Block, B., 2018. Relationship between Yellowfin Tuna (Thunnus albacares) Distribution Caught by Iranian Purse Seiners and Environmental Variables in the Indian Ocean. Iranian Scientific Fisheries Journal 26(1), 67-82. (In Persian)
Haghi, A., Ghorbani, R., Peighambari, S., Lee, M., Kaplan, D., Block, B., 2018. Relationship between Skipjack tuna (Katsuwonus pelamis Linnaeus, 1758) Distribution Caught by Iranian Purse Seiners and Environmental Variables in the Indian Ocean. Journal of Applied Ichthyological Research 6(1). (In Persian)
IOTC, 2019. Review of the statistical data and fishery trends for tropical tunas. IOTC–2019–WPTT21–08_Rev1.
Iranian National Institute for Oceanography and Atmospheric Science, 2012. Oceanographic features of the Oman Sea, Available from http://www.inio.ac.ir. (Accessed on 1 August, 2012). (In Persian)
Kaymaram, F., Emadi, H., Keyabi, B., 2002. Study of Feeding Habits of Yellowfin Tuna (Thunnus albacares) in the Oman Sea. Iranian Scientific Fisheries Journal 10(4), 37-48. (In Persian)
Kumar, N., Kumar M, N., Swetha, N., Nayak, J., Bright, R., and Kumar T, S., 2015. Utility of Sea Surface Height anomaly (SSHa) in Determination of Potential Fishing Zones. ESSO/INCOIS/ASG/TR. Report number: 02, 37p.
Kumari, B., Raman, M., Mali, K., 2009. Locating Tuna Forage Ground Through Satellite Remote Sensing. Remote Sensing 30(22), 5977-5988.
Lan, K., Shimada, T., Lee, M., Su, N., Chang, Y., 2017. Using Remote-Sensing Environmental and Fishery Data to Map Potential Yellowfin Tuna Habitats in the Tropical Pacific Ocean. Remote Sensing 9(5), 444.
Lee, M., Haghi, A., Liu, D., Yang, W., 2017. Potential and Prospective Seasonal Distribution of Hotspot of Albacore Tuna (thunnus alalunga) in the South Indian Ocean Using the Satellite Data. IGARSS, 5747-5750.
Mugo, R., Saitoh, S., Nihira, A., Kuroyama, T., 2011. Application of Multi-Sensor Satellite and Fishery Data, Statistical Models and Marine-GIS to Detect Habitat Preferences of Skipjack Tuna. Handbook of Satellite Remote Sensing Image Interpretation: Marine Applications, pp. 169-185.
Naderi Abbaspour, R., 2013. The Role and Importance of Neritic Tuna Catches in I.R. Iran Fishing Activities. IOTC-2013-WPNT03-10. (In Persian)
Nguyen, D., Doan, V., 2014. Using Remote Sensing Data for Yellowfin Tuna Fishing Ground Forecasting in Vietnamese Offshore Areas. Emerging Technology and Advanced Engineering 4(2), 598-605.
Nurdin, S., Mustapha, A., Lihan, T., 2013. The Relationship between Sea Surface Temperature and Chlorophyll-a Concentration in Fisheries Aggregation Area in the Archipelagic Waters of Spermonde Using Satellite Images. AIP Conference Proceedings 1571, 466-472.
Nurdin, S., Mustapha, M., Lihan, T., Ghaffar, M., 2015. Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique. Sains Malaysiana 44(2), 225–232.
Nurdin, S., Mustapha, M., Lihan, T., Zainuddin, M., 2017. Applicability of Remote Sensing Oceanographic Data in the Detection of Potential Fishing Grounds of Rastrelliger kanagurta in the Archipelagic Waters of Spermonde, Indonesia. Fisheries Research 196, 1-12.
OceanColor WEB 2017. Available from https://oceancolor.gsfc.nasa.gov. (Accessed 18 February 2017).
Paighambari S.Y., Darvishi, M., Ghorbani, A.R., Kaymaram, F., 2018. Population Assessment and Yield Per Recruit of Longtail Tuna (Thunnus tonggol) in Northern of the Persian Gulf and Oman Sea (Iran, Hormozgan Province). Iranian Journal of Fisheries Sciences 17(4), 776-789.
Parsa, M., Kamrani, E., Safaei, M., Paighambari S., and Nishida, T., 2018. Identification of by-Catch Species of Tuna Purse Seiners in Iranian Waters of Oman Sea. Iranian Journal of Fisheries Sciences 17(1), 239-244. (In Persian)
Physical Oceanography Distributed Active Archive Center 2017. Available fromhttps://podaac.jpl.nasa.gov. (Accessed on 10 February 2017).
Rajapaksha, J. K., Nishida, T., Samarakoon, L., 2010. Environmental preferences of yellow fin tuna (Thunnus albacores) in the northeast Indian Ocean: an application of remote sensing data to long-line catches. IOTC Fourteenth Working Party on Tropical Tunas.
Rayegani, B., 2017. Gravel, Cobbles and Boulders Percentage Mapping Using Close-Range Photogrammetry (Case Study: The Tehran-Karaj Plain). Journal of Water and Soil 30, 956-968. (In Persian)
Rayegani, B., Barati, S., Goshtasb, H., Sarkheil, H., Ramezani, J., 2019. An Effective Approach to Selecting the Appropriate Pan-sharpening Method in Digital Change Detection of Natural Ecosystems. Ecological Informatics 53 (2019), 100984.
Rayegani, B., Barati, S., Goshtasb, H., Gachpaz, S., Ramezani, J., and Sarkheil, H., 2020a. Sand and Dust Storm Sources Identification: A Remote Sensing Approach. Ecological Indicators 112, 106099.
Rayegani, B., Barati, S., Sarkheil, H., 2020b. A Simple Model for PIFs Extraction at Digital Change Detection Approach. Modeling Earth Systems and Environment 7(3), 1769-1781 (In Persian)
Setiawati, M., Sambah, A., Miura, F., Tanaka, T., and As-syakur, A., 2015. Characterization of Bigeye Tuna Habitat in the Southern Waters off Java–Bali Using Remote Sensing Data. Advances in Space Research 55(2), 732-746.
Setiawati, M., Tanaka, T., 2017. Utilization of Scatterplot Smoothers to Understand the Environmental Preference of Bigeye Tuna in the Southern Waters off Java-Bali: Satellite Remote Sensing Approach. Fishes 2(1), 1-16.
Teo, S., Boustany, A., Block, B., 2007. Oceanographic preferences of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Marine Biology 152, 1105-1119.
Tijani, K., Morea, A., Chiaradia, M., Nutricato, R., Guerriero, L., 2016. Prototype of a Multi-Platform Remote Sensing Service for Fishing Forecasting.
Varela, J., Intriago, K., Flores, J., Pilozo, C., 2017. Feeding Habits of Juvenile Yellowfin Tuna (Thunnus albacares) in Ecuadorian Waters Assessed from Stomach Content and Stable Isotope Analysis. Fisheries Research 194. 89-98.
Williams, G., Sapoznik, M., Ocampo-Reinaldo, M., Solis, M., Narvarte, M., González, R., Esteves, J.L., Gagliardini, D., 2010. Comparison of AVHRR and SeaWiFS Imagery with Fishing Activity and in Situ Data in San Matías Gulf, Argentina. International Journal of Remote Sensing 31, 4531-4542.
Wolfram, 2003. Normal Distribution, Available from https://mathworld. wolfram.com. (Accessed on 12 August, 2018).
Wood, L., Dragicevic, S., 2007. GIS-Based Multicriteria Evaluation and Fuzzy Sets to Identify Priority Sites for Marine Protection. Biodiversity and Conservation 16, 2539-2558.
Yen, K., Jung Lu, H., Chang, Y., Lee, M., 2012. Using Remote-Sensing Data to Detect Habitat Suitability for Yellowfin Tuna in the Western and Central Pacific Ocean. Remote Sensing 3 (23), 7507-7522.
Zagaglia, C., Lorenzzetti, J., Stech, J., 2004. Remote Sensing Data and Longline Catches of Yellowfin Tuna (Thunnus albacares) in the Equatorial Atlantic. Remote Sensing of Environment 93(1-2), 267-281.
Zainuddin, M., Saitoh, S., 2004. Detection of potential fishing ground for albacore tuna using synoptic measurements of ocean color and thermal remote sensing in the northwestern North Pacific. Geophysical Research Letters 31(20).
Zainuddin, M., Saitoh, K., and Saitoh, S., 2008. Albacore (Thunnus alalunga) Fishing Ground in Relation to Oceanographic Conditions in the Western North Pacific Ocean Using Remotely Sensed Satellite Data. Fisheries Oceanography 17(2), 61-73.
Zainuddin, M., 2011. Skipjack Tuna in Relation to Sea Surface Temperature and Chlorophyll-a Concentration of Bone Bay Using Remotely Sensed Satellite Data. Ilmu dan Teknlogi Kelautan Tropis 3(1), 82-90.