تولید نانوالیاف از کیتوزان استخراج شده از ضایعات میگوی ببری سیاه (Penaeus monodon) به دو روش تک نازله و هسته-پوسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختة دکتری گروه شیلات، دانشکدة منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، گیلان، ایران

2 دانشیار گروه شیلات، دانشکدة منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، گیلان، ایران

3 دانشیار گروه پژوهشی مواد نانو، پژوهشکدة فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، تهران، ایران

4 دانشیار گروه پژوهشی مواد زیستی، پژوهشکدة فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، تهران، ایران

10.22059/jfisheries.2024.378121.1431

چکیده

هدف از تحقیق حاضر، بررسی امکان تولید نانوالیاف از کیتوزان استخراج شده از ضایعات میگوی ببری سیاه (P. monodon) و تأثیر ابعاد نانوالیاف بر میزان سمیت پلیمرهای اولیه با پتانسیل کاربرد در تولید زخم­پوش­ است. در این تحقیق، از دو روش برای تولید نانوالیاف از پلیمر کیتوزان استخراج شده استفاده گردید که شامل الکتروریسی تک­نازله و دونازله بوده، که در روش دوم سعی بر تولید الیاف با قابلیت بارگذاری هسته بود. نانوالیاف الکتروریسی شده از لحاظ ویژگی­های ریخت‌شناختی تحت بررسی میکروسکوپ الکترونی فیلد میدانی (FE-SEM) قرار گرفت. همچنین از فناوری­های آنالیزی مختلف شامل FTIR (طیف ­سنجی مادون قرمز فوریه) و XRD (پراش اشعة ایکس) برای بررسی­ های ساختاری نانوالیاف تولیدشده استفاده گردید. همچنین میزان سمیت به روش MTT نانوالیاف تولیدشده نسبت به پلیمر اولیه سنجش گردید. بررسی نمودارهای طیف­سنجی مادون فوریه و پیک­های پراش اشعة ایکس وجود پلیمرهای کیتوزان و پلی­وینیل­الکل و اختلاط مناسب آنها را نشان داد. همچنین نتایج نشان داد که نانوالیاف با کیفیت و ممتد بدون گره در هر دو روش تک­نازله و دونازله به‌دست آمد. نکتة جالب، ایجاد فضای هسته در نانوالیاف دو نازله بود که با امکان بارگذاری انواع پلیمرها و نانوذرات ثانویه، پتانسیل کاربری خود را در زمینه­های مختلف به‌خصوص حوزة درمان و تولید زخم­پوش نشان داد. علاوه برآن، دستیابی به سمیتی کمتر در نانوالیاف تولید شده نسبت به پلیمرهای اولیه، پتانسیل کاربرد نانوتکنولوژی را در علوم مختلف نشان می ­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production of nanofibers from chitosan extracted from black tiger shrimp (Penaeus monodon) wastes by single nozzle and core-shell methods

نویسندگان [English]

  • Parva Safari 1
  • Eshagh Zakipour Rahimabadi 2
  • Mohammadreza Vaezi 3
  • Aliasghar Behnamghader 4
1 PhD graduate, Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
2 Associated Professor, Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
3 Associated professor, Research Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Tehran, Iran
4 Associated professor, Research Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Tehran, Iran
چکیده [English]

The purpose of the present research is to investigate the possibility of producing nanofibers from chitosan extracted from black tiger shrimp (P. monodon) waste and the effect of nanofiber dimensions on the toxicity of primary polymers with the potential to be used in the production of wound dressings. In this research, two methods were used to produce nanofibers from the extracted chitosan polymer, which included single-needle and co-electrospinning, and in the second method, an attempt was made to produce fibers with core loading capability. Electrospun nanofibers were examined by field electron microscopy (FE-SEM) in terms of morphological characteristics. Also, various analytical technologies including FTIR (Fourier Infrared Spectroscopy) and XRD (X-ray Diffraction) were used to examine the structure of the produced nanofibers. Also, the toxicity of the produced nanofibers compared to the primary polymer was measured by the MTT method. The Fourier spectroscopy diagrams and X-ray diffraction peaks showed the presence of chitosan and polyvinyl alcohol polymers and their proper interactions. Also, the results showed that high-quality and continuous nanofibers without bead were obtained in both single-needle and core-shell methods. The interesting point is the creation of core space in core-shell nanofibers with the possibility of loading various polymers and secondary nanoparticles. This is a potential for its use in various applications, especially such as wound dressings. In addition to that, achieving less toxicity in the produced nanofibers compared to the primary polymers, proposed the potential of nanotechnology in different sciences.

کلیدواژه‌ها [English]

  • Chitosan extraction
  • Nanofiber
  • SEM
  • Cytoxicity
Abdelgawad, A.M., Hudson, S. M., Rojas, O.J., 2014. “Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems”. Carbohydrate Polymers 100(12), 166-178. DOI: 10.1016/j.carbpol.2012.12.043
Abdou, E.S., Nagy, K.S.A., Elsabee, M.Z., 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology 99(5), 1359-1367. DOI: 10.1016/j.biortech.2007.01.051
Duan, B., Dong, C., Yuan, X., Yao, K., 2004. “Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide)”. Journal of Biomaterials Science, Polymer Edition 15(6), 797-811. DOI: 10.1163/156856204774196171
Furuike, T., Komoto, D., Hashimoto, H., Tamura, H., 2017. Preparation of chitosan hydrogel and its solubility in organic acids. International Journal of Biological Macromolecules 104, 1620-1625. DOI: 10.1016/j.ijbiomac.2017.02.099
Geng, X., Kwon, O.H., Jang, J., 2005. Electrospinning of chitosan dissolved in concentrated acetic acid solution”. Biomaterials 26(27), 5427-5432. DOI: 10.1016/j.biomaterials.2005.01.066
Gholipour-Kanani, A., Bahrami, S.H., Joghataie, M.T., Samadikuchaksaraei, A., Ahmadi-Taftie, H., Rabbani, S., Erfani, E., 2014. “Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing”. IET Nanobiotechnol 8(2), 123-131. DOI: 10.1049/iet-nbt.2012.0050
Gutha, Y., Pathak, J.L., Zhang, W., Zhang, Y., Jiao, X., 2017. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO)”. International Journal of Biological Macromolecules, 103, 234-241. DOI: 10.1016/j.ijbiomac.2017.05.020
Habiba, U., Siddique, T. A., Talebian, S., Lee, J. J. L., Salleh, A., Ang, B. C., Afifi, A. M., 2011. “Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions”. Carbohydrate Polymers, 177(Supplement C), 32-39. DOI: 10.1016/j.carbpol.2017.08.115
Hadjianfar, M., Semnani, D., Varshosaz, J., 2019. An investigation on polycaprolactone /chitosan/Fe3O4 nanofibrous composite used for hyperthermia. Polymers for Advanced Technologies 30(11), 2729-2741. DOI: 10.1002/pat.4704
Hajji, S., Younes, I., Ghorbel-Bellaaj, O., Hajji, R., Rinaudo, M., Nasri, M., Jellouli, K., 2014. Structural differences between chitin and chitosan extracted from three different marine sources. International Journal of Biological Macromolecules 65, 298-306. DOI: 10.1016/j.ijbiomac.2014.01.045
Hamdi, M., Hammami, A., Hajji, S., Jridi, M., Nasri, M., Nasri, R., 2017. “Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera”. International Journal of Biological Macromolecules 101, 455-463. DOI: 10.1016/j.ijbiomac.2017.02.103
Homayoni, H., Ravandi, S.A.H., Valizadeh, M., 2009a. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers 77(3), 656-661. DOI: 10.1002/app.30148
Homayoni, H., Ravandi, S.A.H., Valizadeh, M., 2009b. Influence of the molecular weight of chitosan on the spinnability of chitosan/poly(vinyl alcohol) blend nanofibers”.  Journal of Applied Polymer Science 113(4), 2507-2513. DOI: 10.1002/app.30148
Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., Jing, X., 2014. Electrospinning of polymeric nanofibers for drug delivery applications”. Journal of Control Release 185, 12-21. DOI: 10.1002/pi.2695
Ignatova, M., Manolova, N., Markova, N., Rashkov, I., 2009. Electrospun Non-Woven Nanofibrous Hybrid Mats Based on Chitosan and PLA for Wound-Dressing Applications. Macromolecular Bioscience 9(1), 102-111. DOI: 10.1002/mabi.200800189
Komur, B., 2017. Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. Biomedical Engineering Online 16(1), 40. DOI: 10.1186/s12938-017-0334-y
Kriegel, C., Kit, K.M., Mc Clements, D.J., Weiss, J., 2009. “Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 50(1), 189-200. DOI: 10.1016/j.polymer.2008.09.041
Mei, Y., Runjun, S., Yan, F., Honghong, W., Hao, D., Chengkun, L., 2019. Preparation, characterization and kinetics study of chitosan/PVA electrospun nanofiber membranes for the adsorption of dye from water. Journal of Polymer Engineering 39(5), 459-471. DOI: 10.1515/polyeng-2018-0275
Movahedi, M., Asefnejad, A., Rafienia, M., Khorasani, M.T., 2020. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. International Journal of Biological Macromolecules 146, 627-637. DOI: 10.1016/j.ijbiomac.2019.11.233
Nguyen, T.T.T., Chung, O.H., Park, J.S., 2011. “Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity”. Carbohydrate Polymers 86(4), 1799-1806. DOI: 10.1016/j.carbpol.2011.07.014
Pakravan, M., Heuzey, M. C., Ajji, A., 2011. A fundamental study of chitosan/PEO electrospinning. Polymer 52(21), 4813-4824. DOI: 10.1016/j.polymer.2011.08.034
Ohkawa, K., Minato, K., Kumagai, G., Hayashi, S., Yamamoto, H., 2006. Chitosan Nanofiber. Biomacromolecules 7, 3291-3294. DOI: 10.1021/bm0604395
Rinaudo, M., 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001
Safari, P., Zakipour Rahimabadi, E., Vaezi, M. R., Behnamghader, A.A., 2021. Physico-chemical properties and characterization of chitosan extracted from Penaeus monodon wastes via two different conventional extraction method. Journal of Fisheries 74(2), 247-258. (In Persian) DOI: 10.22059/jfisheries.2021.318514.1230
Sarhan, W.A., Azzazy, H.M., 2015. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects”. Carbohydr Polym 122, 135-143. DOI: 10.1016/j.carbpol.2014.12.051
Shalumon, K.T., Anulekha, K.H., Girish, C.M., Prasanth, R., Nair, S.V., Jayakumar, R., 2010. “Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture”. Carbohydrate Polymers 80(2), 413-419. DOI: 10.1016/j.carbpol.2009.11.039
Tchemtchoua, V. T., Atanasova, G., Aqil, A., Filee, P., Garbacki, N., Vanhooteghem, O., Colige, A., 2011. “Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration. Biomacromolecules 12(9), 3194-3204. DOI: 10.1021/bm200680q
Teng, Y., Li, Y., Li, Y., Song, Q., 2020. Preparation of Fe3O4/PVP magnetic nanofibers via in situ method with electrospinning. In: (Eds.), Proceeding of Journal of Physics: Conference Series, 032087. DOI: 10.1088/1742-6596/1549/3/032087
Venugopal, V., 2011. Marine polysaccharides: Food applications. CRC press,Taylor & Francis Group.  LLC, Boca Raton, USA, 372 p.
Wang, S. F., Shen, L., Zhang, W.D., Tong, Y.J., 2005. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6(6), 3067-3072. DOI: 10.1021/bm050378v
Yang, S., Lei, P., Shan, Y., Zhang, D., 2018. “Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane”. Applied Surface Science, 435, 832-840. DOI: 10.1016/j.apsusc.2017.11.191
Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L., Jing, X., 2003. Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release 92(3), 227-231. DOI: 10.1016/S0168-3659(03)00372-9