غربالگری سریع باقیماندة اکسی‌تتراسایکلین (OTC) در فیلة ماهی قزل‌آلای رنگین‌کمان پرورشی (Oncorhynchus mykiss) با استفاده از آزمون الایزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، دانشکدة علوم و فنون دریایی, واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه علوم و مهندسی صنایع غذایی، دانشکدة علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.

10.22059/jfisheries.2024.379730.1439

چکیده

قزل‌آلای رنگین‌کمان یکی از محبوب‌ترین گونة‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های آزاد ماهیان در جهان است. افزایش بازار تقاضا برای این گونه منجر به توسعة پرورش متراکم، شیوع عفونت‌های میکروبی و مصرف آنتی‌بیوتیک‌ها در دورة پرورش شده است. یک گروه از آنتی‌بیوتیک‌های پرمصرف تتراسیکلین‌ها به‌ویژه اکسی‌تتراسایکلین (OTC) است. در این تحقیق  نمونه‌های ماهی قزل‌آلا از مزارع منطقة پلور، کرج، دماوند (عمدة توزیع در استان تهران)، سراب و سیوان-صوفیان (عمده توزیع و بازار مصرف: استان آذربایجان شرقی) خریداری و 30 نمونه از هر مزرعه و در مجموع 300 ماهی غربالگری شدند. محدودة تشخیص برای OTC در قزل‌آلای رنگین‌کمان 0/3 نانوگرم در گرم و واکنش متقابل با آنتی‌بادی  100درصد به‌دست آمد. نتایج نشان داد کلیة ماهیان قزل‌آلا از نظر OTC مثبت بوده، میانگین باقیماندة کسی‌تتراسایکلین کمتر از حداکثر حد مجاز ppb) 2/0MRLs: ) در Codex Alimentarius بودند. این در حالی است که حد مجاز برای OTC در اتحادیه اروپا 1/0 نانوگرم در گرم تعیین شده است.  بر این اساس مصرف قزل‌آلا از مزارع استان آذربایجان شرقی و دماوند ایمن، اما مصرف قزل‌آلای تهیه شده از مزارع کرج و پلور (ppb 130-145) برای افراد حساس و پرخطر توصیه نمی‌شود. در نهایت، استفاده از OTC نباید افزایش یابد تا همچنان در صنعت آبزی‌پروری در سطح مناسب باقی بماند. به‌عنوان آخرین نکته، وجود مقادیر بالای  باقیماندة OTC در منطقة کرج و پلور مشخص می‌کند که تتراسایکلین در کل دورة پرورش و همراه با رژیم غذایی روزانه مورد استفاده قرار می‌گیرد و همچنین دوره قطع مصرف جهت حذف، قبل از جمع‌آوری و عرضة ماهیان به بازار مصرف رعایت نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Quick screening of Oxytetracycline (OTC) residue in cultured rainbow trout (Oncorhynchus mykiss) fillet using ELISA assay

نویسندگان [English]

  • Rezvan Mousavi Nadushan 1
  • Behruz Hazrati 2
1 Department of Fishery, Faculty of Marine science and Technology, Tehran North Branch, Islamic Azad University Tehran, Tehran, Iran.
2 Department of Food Science & Technology, Faculty of Marine Science and Technology, Tehran North Branch, Islamic Azad University Tehran, Tehran, Iran.
چکیده [English]

Rainbow trout is one of the most popular salmonid fish in the world. Increased market demand for rainbow trout has led to the development of intensive farming and the spread of microbial infections during the rearing period. A group of widely used antibiotics is tetracycline, especially oxytetracycline (OTC). In this research, trout samples were purchased from farms in Polur, Karaj, Damavand (main distribution in Tehran province), Sarab and Sivan-Sufian (consumer market: East Azerbaijan province) and 30 samples from each farm and a total of 300 fish were screened. The detection limit for OTC in rainbow trout was 0.3 ppb and the antibody cross-reactivity was 100%. All salmon were positive for OTC, the mean OTC residues were below the Maximum Limits (MRLs) in Codex Alimentarius. While the limit for OTC in the European Union is set at 0.1 ppm, the consumption of trout from the farms of East Azarbaijan and Damavand is safe, but the consumption of trout prepared from Karaj and Polur farms (ppb 145-130) is not recommended for sensitive and high-risk people. Finally, OTC use should not increase to remain at an appropriate level in the fisheries industry. As a last point, the presence of high amounts of OTC residues in Karaj and Pleur region indicates that tetracycline is consumed during the entire rearing period, along with the daily diet, as well as the withdrawal period for removal, before collecting and sending the fishes to the market is not complied.

کلیدواژه‌ها [English]

  • Cultured fish
  • ELISA
  • Oxytetracycline residue
  • rainbow trout
Aladekoyi, O., Siddiqui, S., Hania, P., Hamza, R., Gilbride, K., 2024.  Accumulation of antibiotics in the environment: Have appropriate measures been taken to protect Canadian human and ecological health. Ecotoxicology and Environmental Safety 280, 116513. DOI: 10.1016/j.ecoenv.2024.116513
Alanazi, F., Almugbel, R., Maher, H.M., Alodaib, F.M., Alzoman, N.Z., 2021.    Determination of tetracycline, oxytetracycline and chlortetracycline residues in seafood products of Saudi Arabia using high performance liquid chromatography–Photo diode array detection. Saudi Pharmaceutical Journal 29(6), 566-575. DOI: 10.1016/j.jsps.2021.04.017
Alós, J.I., Serrano, M.G., Gómez-Garcés, J.L., Perianes, J., 2005. Antibiotic resistance of Escherichia coli from community-acquired urinary tract infections in relation to demographic and clinical data. Clinical Microbiology and Infection 11(3), 199-203. DOI: 10.1016/j.jsps.2021.04.017
Armstrong, S.M., Hargrave, B.T., Haya, K., 2005. Antibiotic use in finfish aquaculture: modes of action, environmental fate, and microbial resistance. Environmental Effects of Marine Finfish Aquaculture pp. 341-357.
Arnaud, N., Georges, J., 2001. Sensitive detection of tetracyclines using europium-sensitized fluorescence with EDTA as co-ligand and cetyltrimethylammonium chloride as surfactant. Analyst 126(5), 694-697.
BCGlobal, 2020. Veterinary Drugs. https://www.bryantchristie.com/BCGlobal-Subscriptions/Veterinary-Drugs (accessed 20 November 2020).
Ballash, G.A., Baesu, A., Lee, S., Mills, M.C., Mollenkopf, D.F., Sullivan, S.M.P., Lee, J., Bayen, S., Wittum, T.E., 2022. Fish as sentinels of antimicrobial resistant bacteria, epidemic carbapenemase genes, and antibiotics in surface water. Plos one 17(9), e0272806. DOI: 10.1371/journal.pone.0272806
Chen, C.Y., Bowser, P.R., 2005. Pharmacokinetics of oxytetracycline in nile tilapia Oreodromis niloticus challenged with Streptococcus iniae and Vibrio vulnificus. Journal of the World Aquaculture Society 36(3), 262-270. DOI: 10.1111/j.1749-7345.2005.tb00330.x
Codex Alimentarius, 2021. Codex Veterinary Drug Residue in Food Online Database. http ://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/vetdrugs/en/(accessed 17 March 2020).
Espinosa-Mansilla, A., de la Peña, A.M., 2009. Analysis of antibiotics in fish samples. Analytical and Bioanalytical Chemistry 395(4), 987-1008. DOI: 10.1007/s00216-009-2872-z
FAO. 2024. Morocco fisheries statistics: production, consumption and trade. In: FAO Fisheries and Aquaculture Division [online]. Rome. World Wide Web electronic publication. Retrieved on March 2, 2024 from https://www.fao.org/inaction/globefish/countries/countries/mar/fr/.
Jerbi, M.A., Ouanes, Z., Besbes, R., Achour, L., Kacem, A., 2011. Single and combined genotoxic and cytotoxic effects of two xenobiotics widely used in intensive aquaculture. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 724(1-2), 22-27. DOI: 10.1016/j.mrgentox.2011.04.010
Khalifa, H. O., Shikoray, L., Mohamed, M. Y. I., Habib, I., Matsumoto, T., 2024. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 13(11), 1629. DOI: 10.3390/foods13111629
Leal, J.F., Santos, E.B., Esteves, V.I., 2019. Oxytetracycline in intensive aquaculture: water quality during and after its administration, environmental fate, toxicity and bacterial resistance. Reviews in Aquaculture 11(4), 1176-1194. DOI: 10.1111/raq.12286
Limbu, S.M., Chen, L.Q., Zhang, M.L., Du, Z.Y., 2021. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: a review. Reviews in Aquaculture. 13 (2): 1015–1059. DOI: 10.1111/raq.12511
Liu, Y., Yang, H., Yang, S., Hu, Q., Cheng, H., Liu, H., Qiu, Y., 2013. High-performance liquid chromatography using pressurized liquid extraction for the determination of seven tetracyclines in egg, fish and shrimp. Journal of Chromatography B 917, 11-17. DOI: 10.1016/j.jchromb.2012.12.036
Lulijwa, R., Rupia, E.J. and Alfaro, A.C., 2020. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture 12, 640-663. RAQ, 12344. DOI: 10.1111/raq.12344
Mahmoudi, R., Gajarbeygi, P., Norian, R., Farhoodi, K., 2014. Chloramphenicol, sulfonamide and tetracycline residues in cultured rainbow trout meat (Oncorhynchus mykiss). Bulgarian Journal of Veterinary Medicine 17(2), 147-152.
Majdzadeh Tabatabai, M.R., Mousavi Nadushan, R., Hashemi, S., 2017. Impact of hydrogeomorphic processes on ecological functions of brown trout habits. International Journal of Environmental Science and Technology 14, 1757-1770. https://doi.org/ 10.1007/s13762-017-1281-7
Metian, M., Troell, M., Christensen, V., Steenbeek, J., Pouil, S., 2020. Mapping diversity of species in global aquaculture. Reviews in Aquaculture 12, 1090-1100. DOI: 10.1111/raq.12374
Mog, M., Ngasotter, S., Tesia, S., Waikhom, D., Panda, P., Sharma, S., Varshney, S., 2020. Problems of antibiotic resistance associated with oxytetracycline use in aquaculture: A review. J. Journal of Entomology and Zoology Studies 8, 1075-1082.
Mousavi Nadushan, R., Ramezani, M., 2011. Bioassessment of Kordan Stream (Iran) water quality using macro-zoobenthos indices. International Journal of Biology 3(2), 127-134.
Pandey, R., Asche, F., Misund, B., Nygaard, R., Adewumi, O.M., Straume, H.M., Zhang, D., 2023. Production growth, company size, and concentration: The case of salmon. Aquaculture 577, 739972. DOI: 10.1016/j.aquaculture.2023.739972
Payne, C.J., Turnbull, J.F., MacKenzie, S., Crumlish, M., 2022. The effect of oxytetracycline treatment on the gut microbiome community dynamics in rainbow trout (Oncorhynchus mykiss) over time. Aquaculture 560, 738559. DOI: 10.1016/j.aquaculture.2022.738559
Seo, J., Kloprogge, F., Smith, A.M., Karu, K., Ciric, L., 2024. Antibiotic Residues in UK Foods: Exploring the Exposure Pathways and Associated Health Risks. Toxics 12(3), 174. DOI: 10.3390/toxics12030174
Sidhu, P.K., Smith, S.A., Mayer, C., Magnin, G., Kuhn, D.D., Jaberi-Douraki, M., Coetzee, J.F., 2018. Comparative pharmacokinetics of oxytetracycline in tilapia (Oreochromis spp.) maintained at three different salinities. Aquaculture 495, 675-681. DOI: 10.1016/j.aquaculture.2018.06.044.
Sekkin, S. and Kum, C., 2011. Antibacterial drugs in fish farms: application and its effects. Recent Advances in Fish Farms pp. 217-250.
Senyuva, H.Z., Özden, T., Sarica, D.Y., 2000. High-performance liquid chromatographic determination of oxytetracycline residue in cured meat products. Turkish Journal of Chemistry 24(4), 395-400.
Serrano, P.H., 2005. Responsible use of antibiotics in aquaculture (Vol. 469). Food & Agriculture Org.
Susakate, S., Poapolathep, S., Chokejaroenrat, C., Tanhan, P., Hajslova, J., Giorgi, M., Saimek, K., Zhang, Z., Poapolathep, A., 2019. Multiclass analysis of antimicrobial drugs in shrimp muscle by ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Food and Drug Analysis 27(1), 118-134. DOI: 10.1016/j.jfda.2018.06.003
Türk, E., Oğuz, H., 2016. Investigation of Tetracycline Residues in Fish Caught from Surrounding Fish Farms in Muğla District. Eurasian Journal of Veterinary Sciences 32(2), 74-79.
United Stated Department of Agriculture (USDA), 2021. Maximum Residue Limits (MRL). Database. https://www.fas.usda.gov/maximum-residue-limits-mrl-database (accessed 20 November 2020).
Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654. DOI: 10.1073/pnas.1503141112
Xiao, Y., Liu, S., Gao, Y., Zhang, Y., Zhang, Q., Li, X., 2022. Determination of antibiotic residues in aquaculture products by liquid chromatography tandem mass spectrometry: Recent trends and developments from 2010 to 2020. Separations 9(2), 35. DOI: 10.3390/separations9020035