اثر آنتی‌بیوتیک‌های اکسی‌تتراسایکلین، نئومایسین‌سولفات و فلورفنیکل بر رشد و محتوای رنگدانه‌های ریزجلبک Chlorella vulgaris

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

10.22059/jfisheries.2024.381183.1441

چکیده

انتشار مداوم آنتی‌بیوتیک‌ها در محیط‌های آبی اثرهای نامطلوبی بر موجودات آبزی غیرهدف مانند فیتوپلانکتون‌ها دارد. هدف از این تحقیق بررسی تأثیر سه آنتی‌بیوتیک اکسی‌تتراسایکلین، نئومایسین‌سولفات و فلورفنیکل بر ریزجلبک آب شیرین Chlorella vulgaris در شرایط آزمایشگاهی بود. به‌منظور انجام آزمایش غلظت‌های مختلف صفر، 0/005، 0/05، 0/5، 5 و 50 میلی‌گرم در لیتر از آنتی‌بیوتیک‌های اکسی‌تتراسایکلین، نئومایسین‌سولفات و فلورفنیکل بر اندازة جمعیت، میزان ‌‌رشد ‌ویژه و محتوای رنگدانه‌ها بررسی گردید. نتایج نشان داد که اثرهای آنتی‌بیوتیک‌ها بسته به نوع آنتی‌بیوتیک و غلظت‌های آنها تفاوت دارد. افزایش غلظت آنتی‌بیوتیک اکسی‌تتراسایکلین منجر به افزایش مقادیر تراکم سلولی نسبت به تیمار شاهد شد، ولی تفاوت معنی‌داری در میزان‌ رشد ویژه و میزان کلروفیل‌های a، b و کاروتنوئید مشاهده نشد (0/05<P). غلظت‌های کم آنتی‌بیوتیک نئومایسین‌سولفات (0/005 و 0/05 میلی‌گرم در لیتر) تفاوت معنی‌داری با تیمار شاهد نشان نداد (05/0<P)، درحالی‌که در غلظت‌های زیادتر (5/0، 5 و 50 میلی‌گرم در لیتر) کاهش معنی‌داری در تراکم، میزان ‌رشد ویژه و کاروتنوئیدها نسبت به تیمار شاهد مشاهده شد (0/05>P). در آنتی‌بیوتیک فلورفنیکل به‌جز تیمار 0/005 میلی‌گرم در لیتر که منجر به افزایش جزئی در مقادیر تراکم سلولی، رشد ویژه و میزان کلروفیل a نسبت به تیمار شاهد شد، سایر تیمارها اختلاف معنی‌داری نداشتند (0/05<P). این مطالعه نشان داد که واکنش جلبک C. vulgaris به آنتی‌بیوتیک‌های آزمایشی متداول در آبزی‌پروری سریع، کم‌هزینه و به‌راحتی قابل‌اندازه‌گیری است، بنابراین می‌توان از جلبک‌های تک‌سلولی مانند C. vulgaris برای بررسی اثرهای آنتی‌بیوتیک‌ها در محیط‌های آبی استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of oxytetracycline, neomycin sulfate and fluorophenicol antibiotics on growth and pigments contents of microalgae Chlorella vulgaris

نویسندگان [English]

  • Omidvar Farhadian
  • Niloofar Nozarpour
  • Safiollah Heidari
  • Mobina Ahadifar
Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

The spread of antibiotics and their continued release into aquatic environments has adverse effects on non-target aquatic organisms such as phytoplankton. The aim of this study was to investigate the effect of three antibiotics, oxytetracycline, neomycin sulfate and fluorophenicol on the freshwater microalga Chlorella vulgaris in the laboratory conditions. In order to examin different concentrations of 0, 0.005, 0.05, 0.5, 5 and 50 mg/L of oxytetracycline, neomycin sulfate and fluorophenicol antibiotics on the size population, specific growth rate and pigments were studied. The results showed that there is a correlation between the type and concentration of antibiotics on different algae growth indices. Increasing the concentration of oxytetracycline led to an increase in cell density compared to the control treatment, but no significant difference was observed in specific growth rate and chlorophyll a, b and carotenoid levels (P>0.05). Low concentrations of the neomycin sulfate (0.005 and 0.05 mg /L) did not show a significant difference with the control treatment (P>0.05), while at higher concentrations (0.5, 5 and 50 mg/L) significant decrease in density and specific growth rates was observed compared to the control (P<0.05). In fluorophenicol, except for the 0.05 mg/L treatment, which resulted in a slight increase in cell density, specific growth and chlorophyll a value compared to the control treatment, there was no significant difference between the other treatments (P>0/05). This study showed that the response of C. vulgaris to the examined antibiotics is rapid, inexpensive and easily measurable; therefore, C. vulgaris can be used for antibiotics effects in aquatic environments.

کلیدواژه‌ها [English]

  • Antibiotic
  • Chlorella vulgaris
  • Pigments
  • Specific growth rate
Abdo, S.M., El-Enin, S.A., El-Khatib, K.M., El-Galad, M.I., Wahba, S.Z., El Diwani, G., Ali, G.H., 2015. Preliminary economic assessment of biofuel production from microalgae. Renewable and Sustainable Energy Reviews 55(1), 1147-1153. DOI:10.1016/j.rser.2015.10.119
Azevedo, F.C.R., Vaz, I.C.D., Barbosa, F.A.R., Magalhaes, S.M.S., 2019. Toxicological effects of ciprofloxacin and chlorhexidine on growth and chlorophyll a synthesis of freshwater cyanobacteria. Brazilian Journal of Pharmaceutical Sciences 55(1), 79-86. DOI:10.1590/s2175-97902019000217661
Baicha, Z., Salar-Garcia, M.J., Ortiz-Martínez, V.M., Hernandez-Fernandez, F.J., De los, Rios, A.P., Labjar, N., Lotfi, E., Elmahi, M., 2016. A critical review on microalgae as an alternative source for bioenergy production: A promising low-cost substrate for microbial fuel cells. Fuel Processing Technology 154(1), 104-116. DOI: 10.1016/j.fuproc.2016.08.017
Bashir, K.M.I., Cho, M.G., 2016. The effect of kanamycin and tetracycline on growth and photosynthetic activity of two chlorophyte algae. Bio Medical Research International 111-125. DOI:10.1155/2016/5656304
Belinger, E.G., Sigee, D.C., 2015. Freshwater Algae: Identification and use as bioindicators. John Wiley & Sons. 271 p.
Botelho, R.G., Christofoletti, C.A., Correia, J.E., Ansoar, Y., Olinda, R.A.D., Tornisielo, V.L., 2015. Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere 132(1), 206-212. DOI:10.1016/j.chemosphere.2015.02.053
Eguchi, K., Nagase, H., Ozawa, M., Endoh, Y.S., Got, K., Hirata, K., Miyamoto, K., Yoshimura, H., 2004. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57(11), 1733-1738. DOI:10.1016/j.chemosphere.2004.07.017
Falaise, C., Francois, C., Travers, M.A., Morga, B., Haure, J., Tremblay, R., Turcotte, F., Pasetto, P., Gastineau, R., Hardivillier, Y., Leignel, V., 2016. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs 14(2), 159-186. DOI: 10.3390/md14090159
Fu, L., Huang, T., Wang, S., Wang, X., Su, L., Li, C., Zhao, Y., 2017. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere 168(1), 217-222. DOI:10.1016/j.chemosphere.2016.10.043
Geiger, E., Hornek-Gausterer, R., Saçan, M.T., 2016. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicology and Environmental Safety 129(2), 189-198. DOI:10.1016/j.ecoenv.2016.03.032
Guo, J., Selby, K., Boxall, A.B., 2016. Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major‐use antibiotics. Environmental Toxicology and Chemistry 35(10), 2587-2596. DOI:10.1002/etc.3430
Katzung, B.G., 2017. Basic and Clinical Pharmacology, 14e Ed. McGraw-Hill Education, New York, NY, 1265 p.
Khalaji, M., Hiseini, S., Ghorbani, R., Agh, N., Rezayi, H., 2019. Use of Chlorella vulgaris microalgae in the treatment of dairy wastewater. International Journal of Hydrogen Energy 12(2), 307-318. (In Persian)
Khuantrairong, T., Traichaiyaporn, S., 2012. Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: Cladophora sp.) by supplementary inorganic phosphate and investigation of its biomass production. Maejo International Journal of Science and Technology 6(1), 1-11. DOI:10.14456/mijst.2012.1
Lavens, P., Sorgeloos, P., 1996. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical. 295 p.
Liu, W., Ming, Y., Huang, Z., Li, P., 2012. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant Physiology and Biochemistry 60(1), 165-170. DOI:10.1016/j.plaphy.2012.08.009
Martinez, M.E., Sanchez, S., Jimenez, J.M., El Yousfi, F., Munoz, L., 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology 73(1), 263-272. DOI: 10.1016/S0960-8524(99)00121-2
Nichols, H.W., 1973. Growth media – freshwater. In: Stein J.R., editor. Cambridge University Press, pp. 7-24.
Omori, M., Ikeda, T., 1984. Distribution and community structure. Methods in Marine Zooplankton Ecology. Wiley-Interscience Publication. pp. 253-279.
Parsons, T.R., Maita, Y., Lalli, C.M., 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford.
Robinson, A.A., Belden, J.B., Lydy, M.J., 2005. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry: An International Journal 24(2), 423-430. DOI:10.1897/04-210R.1
Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., Wehrli, B., 2006. The challenge of micropollutants in aquatic systems. Science 313(5790), 1072-1077. DOI:10.1126/science.1127291
Sendra, M., Moreno-Garrido, I., Blasco, J., Araujo, C.V., 2018. Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environmental Pollution 242(Part A, 1), 357-366. DOI:10.1016/j.envpol.2018.07.009
Seoane, M., Rioboo, C., Herrero, C., Cid, A., 2014. Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch. Marine Environmental Research 101(1), 1-7. DOI:10.1016/j.marenvres.2014.07.011
Siedlewicz, G., Zak, A., Sharma, L., Kosakowska, A., Pazdro, K., 2020. Effects of oxytetracycline on growth and chlorophyll a fluorescence in green algae (Chlorella vulgaris), diatom (Phaeodactylum tricornutum) and cyanobacteria (Microcystis aeruginosa and Nodularia spumigena). Oceanologia 62(2), 214-225. DOI:10.1016/j.oceano.2019.12.002
Song, C., Wei, Y., Sun, J., Song, Y., Li, S., Kitamura, Y., 2019. Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38. Bioresource Technology 296, 78-89. DOI:10.1016/j.biortech.2019.122320
Sukran, D., Tohit, G., Ridvan, S., 1998. Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany 22(1), 13-17.
Taskan, E., 2016. Effect of tetracycline antibiotics on performance and microbial community of algal photo-bioreactor. Applied Biochemistry and Biotechnology 179, 947-958. DOI: 10.1007/s12010-016-2042-7
Wise, R., 2002. Antimicrobial resistance: priorities for action. Journal of Antimicrobial Chemotherapy 49(4), 585-586. DOI:10.1093/jac/49.4.585
Xie, X., Zhou, Q., Lin, D., Guo, J., Bao, Y., 2011. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environmental Science and Pollution Research 18(4), 566-575. DOI: 10.1007/s11356-010-0398-8
Xu, D., Xiao, Y., Pan, H., Mei, Y., 2019. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicology and Environmental Safety 174(1), 43-47. DOI: 10.1016/j.ecoenv.2019.02.063
Yang, W., Tang, Z., Zhou, F., Zhang, W., Song, L., 2013. Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Environmental Toxicology and Pharmacology 35(2), 320-324. DOI:10.1016/j.etap.2013.01.006