تنوع ژنتیکی اردک‌ماهی (Linnaeus, 1758; Esox lucius) در شرق دریای خزر با استفاده از نشانگر ریزماهواره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه شیلات دانشکدة منابع طبیعی دانشگاه تربیت مدرس، نور

2 کارشناس ارشد رشتة تکثیر و پرورش آبزیان دانشگاه تربیت مدرس، نور

3 استادیار گروه زیست‌شناسی دریا دانشگاه تربیت مدرس، نور

چکیده

 
اردک‌ماهی یکی از گونه‌های اقتصادی و باارزش حوزة جنوبی دریای خزر است که اطلاعات دربارة جمعیت‌های مختلف آن در حوزة جنوبی خزر در دسترس نیست. با توجه به اهمیت شناخت تنوع ژنتیکی در مدیریت ذخایر و حفاظت از گونه‌ها در این مطالعه از هفت جفت آغازگر ریزماهواه‌ای برای بررسی 90 نمونه اردک‌ماهی از سه منطقة دهانة رودخانة تجن، آب‌بندان‎‌های ایزدشهر و تالاب لپوی زاغمرز واقع در استان مازندران استفاده شد. میانگین تعداد آلل مشاهده‌شده در نمونه‌های رودخانة تجن 286/0 و ایزدشهر 010/1 و تالاب لپوی 800/0 و میانگین هتروزیگوسیتی مشاهده‌شده و مورد انتظار برای مجموع نمونه‌ها به ترتیب 383/0 و 621/0 محاسبه شد. نتایج آزمون انحراف از تعادل هاردی- واینبرگ نشان داد که تنها یکی از نمونه‌ها در تعادل قرار داشت. با توجه به نتایج، علائمی از تنگنای ژنتیکی در جمعیت‌ها دیده شد. دندروگرام ترسیمی و آزمون واریانس مولکولی بیانگر وجود سه جمعیت مجزا در سه منطقة مورد مطالعه بود که می‌بایست در مدیریت ذخایر این گونه مورد توجه قرار گیرد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The genetic structure of Pike Esox lucius Linnaeus 1758 in the Southeast of the Caspian Sea, using microsatellite markers

نویسندگان [English]

  • Mohammad Reza Kalbassi 1
  • mona tabarrok 2
  • Mohammad Sadegh Alavi Yeganeh 3
1 Prof. Dept. of Fisheries, Tarbiat Modaress University, Mazandaran, Nour, Iran
2 (M.Sc.) of Fisheries, Tarbiat Modaress University ,Mazandaran, Nour, Iran.
3 Assistant Prof.Dep. Marine Science, Tarbiat Modaress University ,Mazandaran, Nour, Iran.
چکیده [English]

Esox lucius Linnaeus1758  is one of the economically valuable species of Caspian Sea. Genetic diversity of marine resources is of vital importance in their management and protection. Considering the lack of information about genetic differences this species; seven microsatellite loci were used for 90 sample analyses. The results showed conspicuous genetic variation in regions using Fst, AMOVA and a relatively high level of gene flow was found among populations. The average observed and expected heterozygosities were 0.383 and 0.622, respectively. Assessment of Hardy-Weinberg equilibrium showed that all samples of  studied tests were significantly deviated from H-W equilibrium (p ≤ 0.05). Results show evidences for genetic bottleneck in the populations. Graphical cluster represents a distinct molecular variance test, there are three distinct and separate population in the three areas that should be considered in the management of these reserves.
 
 

کلیدواژه‌ها [English]

  • Esox lucius
  • Microsatellite
  • heterozygosity
  • Hardy-Weinberg equilibrium
 

Bromage, N., Porter, M., Randall, C., 2001. The environmental regulation of maturation in farmed finfish

with special reference to the role of photoperiod and melatonin. Aquaculture 197, 63-98.

Avise, J. C., 2000. Phylogeography the history and formation of species. Harward University Press, Cambridge.

 

Bataillon, T. M., David, J. L. and Schoen, D. J., 1996. Neutral genetic markers and conservation: simulated Germplasm collections. Genetics 144,409-417.

 

Dewoody, J. A. and Avise, J. C. , 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Fish biology 56, 461-473.

 

Diz, P. A., and Presa, P., 2009. The genetic diversity pattern of Mytilus alloprovincialis in Galician Rías (NW Iberian estuaries). Aquaculture 287, 278-285.

 

Frankham, R., 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology 17, 325-333.

 

Ferguson, A., Taggart, J. B., Prodohl, P. A., McMeel, O., Thompson, C., Stone, C., McGinnity, P. and Hynes, R. A., 1995. The application of molecular markers to the study and conservation of fish populations whit special reference to Salmo. Fish Biology 47,103-126.

 

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39,783-791.

 

Ferguson, A., Taggart, J. B., Prodohl, P. A., McMeel, O., Thompson, C., Stone, C., McGinnity, P. and

Hynes, R. A., 1995. The application of molecular markers to the study and conservation of fish populations whit special reference to Salmo. Fish Biology 47,103-126.

 

Ha, H. P., Nguyen, T. T., Poompuang, S., Na-Nakorn, U., 2009. Microsatellites revealed no genetic differentiation between hatchery and contemporary wild populations of striped catfish, Pangasianodon hypophthalmus (Sauvage 1878) in Vietnam. Aquaculture 291, 154-160.

 

 

Hakansson, J. and Jensen, P., 2005. Behavioural and morphological variation between captive populations of red junglefowl (Gallus gallus) possible implications for conservation. Biological Conservation 122, 431-439.

 

Hillis, D. M. and Mortiz, C. 1996. Molecular systematic. 2nd Ed, Sinauer Associates Inc, Publishers Sunderland, Massachusetts.

 

Launey, S., Krieg, F., Morin, J., Laroche, J., 2003.  Five new microsatellite markers for Northern pike (Esox lucius). Mol. Ecol. Notes 3, 366–368.

 

Li, J., wang, G., and Bai, Z. 2009. Genetic variability in four wild and two farmed stocks of the Chines freshwater pearl mussel (Hyriopsis cumingii) estimated by microsatellite DNA markers. Aquaculture 287 ,286-291.

Lin, Y. S., Poh, Y. P., Lin, S. M. and Tzeng, C. S. , 2002. Molecular techniques to identify freshwater eels. Zoological Studies 41,421-430.

 

Lind, C. U., Evans, B. S., Knauer, J., Taylor, J. J. U. and Jerry, D. R., 2009. Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture 286,12-19.

 

Liu, Z. and Cordes, J. F., 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238,1-37.

 

Liu, F., Xia, J. H., Bai, Z. H., Fu, J. J., Li, J. L. and Yue, G. H., 2009. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 297, 51-56.

 

Lucentini, L., Palomba, A., Lancioni, H., Gigliarelli, L., Natali, M., Panara, F., 2006. Microsatellite polymorphism in Italian populations of northern pike (Esox lucius L.). Fisheries Research 80, 251-262.

 

Lucentini, L., Palomba, A., Lancioni, H., Gigliarelli, L., Sgaravizzi, G., Natali, M., Panara, F., 2009. Temporal changes and effective population size of an Italian isolated and supportive-breeding managed northern pike (Esox Lucius) population. Fisheries Research 96,139-147.

 

Miller, L.M., Kapuscinski, A.R., 1996. Microsatellite DNA markers reveal new levels of genetic variation in northern pike. Trans. Am. Fish. Soc. 125, 971–977.

 

Nei, M., 1972. Genetic distance between populations. American Naturalist 106, 283- 92.

 

Pampoulie, C., Jorundsdottir, T.D., Steinarsson, A., Petursdottir, G., tefansson, M.O., Danlelsdottir, A.K. , 2006. Genetic comparison of experimental farmed strains and wild Icelandic populations of Atlantic cod (Gadus morhus L.). Aquaculture 261,556-564.

 

Peakall, R. and Smouse, P. E., 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology 6,288-295.

 

Pinera, J. A., Blanco, G., Vázquez, E. and Sánchez, J. A., 2007. Genetic diversity of black spot seabream (Pagellus bogaraveo) populations Spanish Coasts: a preliminary study. Marin Biology 151,2153-2158.

 

Raymond, M. and Rousset, F., 1995. GENEPOP (Version 1.3): Population genetic software for exact tests and ecumenicisim. Heredity 86,248-249.

 

Rodzen, J.A., May, B., 2002. Inheritance of microsatellite loci in the polyploidy white sturgeon (Acipenser transmontanus). Genome 54, 1064-1076.

 

Ryman, N. and Utter, F. (eds) 1987. Population genetics and fishery management. University of Washington Press, Washington.  

 

Sambrook J., Fritsch E. F, Maniatis T., 1989: Electrophpresis of RNA through Gels Containing Formaldehyde: Molecular Cloning, 2nd edn. Cold Spring Harbor, NY: CSH Laboratory Press, p: 743-745

 

Verspoor, E. and Jordan, W. C., 1989. Genetic variation at the Me-2 locus in the Atlantic salmon within and between rivers: evidence for its selective maintenance. Fish Biology 35, 205-213.

 

Wachirachaikaran, A., Rungsin, W., Srisapoome, P., 2009. Crossing of African catfish (Clarias gariepinus) strains based on strain selection using genetic diversity data. Aquaculture.

 

Wang, C., Yu, X. and Tong, J. (2007) Microsatellite diversity and population genetic structure of redfin culture (Culter erythropterus) in fragmented lakes of the Yangtze River. Hydrobiologia 586:321-329.

 

Willson, A. C., Cann, S. M., Goerge, M., Gyhensten, V. B., Helm By Chcowsh, K. M., 1997. Mitochondrial DNA and two perspective on evolutionary genetics. Biological Journal of the Linnean Society 26,375-400.

 

Wright, S., 1987. Evolution and the genetics of populations. Vol. 4: variability within and among natural populations. University of Chicago Press, Chicago.

 

Xu, Z., Primavera, J.H., De la pena, L.D., Pettit,P., Belak, J., Warren, A.A., 2001. Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites. Aquaculture 199,13-40.

 

 

Yeh, F. C., Yang, R. C. and Boyle, T., 1999. POPGENE version 1.3.1. Microsoft Window-bases Freeware for population Genetic Analysis. Retrieved from: www.uallberta.ca/fyeh/. University of Alberta and the Centre for International Forestry Research.