اثر خوراک آلوده به سطوح مختلف آفلاتوکسین ب1 و زیرالنون بر عملکرد رشد و آسیب شناسی بافت روده و آبشش ماهی قرمز (Carassius auratus)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه شیلات و آبزیان، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه شیلات و آبزیان، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار گروه مهندسی منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

4 دانشیار گروه علوم پایه، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

10.22059/jfisheries.2023.353623.1363

چکیده

در این مطالعه اثر آفلاتوکسین B1 (AFB1) و زیرالنون (ZEA) خوراک روی ماهی قرمز، Carassius auratus، مورد بررسی قرار گرفت. در مجموع تعداد 540 قطعه ماهی قرمز انگشت‌قد با میانگین وزنی 0/12±6/25 گرم به‌صورت تصادفی در قالب 9 تیمار آزمایشی با 3 تکرار با جیره­ های غذایی آزمایشی شامل سه سطح AFB1 (0، 50 و 100ppb) و سه سطح  ZEA (0، 500 و 1000ppb) به مدت 60 روز مورد آزمایش قرار گرفتند. شاخص ­های رشد و تغذیه و همچنین آسیب­­ های بافتی وارد بر آبشش و روده مورد بررسی قرار گرفت. نتایج نشان داد که آلودگی خوراک با AFB1 و ZEA باعث کاهش عملکرد رشد و شاخص‌های تغذیه‌ای گروه‌های آزمایشی شد؛ بیشترین و کمترین میزان ضریب رشد حرارتی (TGC)، وزن نهایی بدن (FBW)، افزایش وزن بدن (WG) و ضریب رشد روزانه (DGC) به‌ترتیب متعلق به گروه کنترل و AFB50ZEA1000 بود (0/05>P). اگرچه شاخص‌های تغذیه­ ای، از جمله نسبت بازدة پروتئین (PER)، ارزش پروتئین تولیدی (PPV) و بازدة چربی (LER) در بین گروه‌های آزمایشی مختلف تفاوت معنی ­داری نداشتند (0/05<P)، اما ماهی‌های تغذیه شده با خوراک حاوی 500ppb  ZEA کمترین مقدار LPV را داشتند (0/05>P). همچنین بیشترین میزان التهاب بافت روده (0/75±4/0) و نکروز (0/75±4/0) در گروه AFB100 ZEA500 مشاهده شد (0/05>P). همچنین، استفادة همزمان از AFB1 و ZEA در جیرة غذایی شدت آسیب‌های بافتی شامل اتصال رشته ­های آبششی، هایپرپلازی، احتقان و خونریزی را تقریباً در تمامی تیمارهای حاوی AFB1 و ZEA افزایش داد (0/05>P). بنابراین، خوراک حاوی AFB1 و ZEA می­ تواند سبب کاهش شاخص‌های عملکرد رشد ماهی حتی در غلظت‌هایی کمتر از سطوح امن توصیه شده برای آبزیان گردد. به‌عبارتی باید در مورد آستانة ایمن مایکوتوکسین­ ها در خوراک از نظر سلامتی و عملکرد ماهی تجدید نظر شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of diet contaminated with different levels of aflatoxin B1 and zearalenone on growth performance and pathology of the intestine and gills in goldfish, Carassius auratus

نویسندگان [English]

  • Seyedeh Zhino Hoseyni 1
  • Ahmad Imani 2
  • Arya Vazizadeh 3
  • Kourosh Sarvi Moghanloo 2
  • Mazdak Razi 4
1 Ph.D Candidate, Department of Fisheries Sciences, Faculty of Natural Resources, Urmia University, Urmia, Iran
2 Urmia University, Faculty of Natural Resources, Dept. of Fisheries
3 Associate Professor, Department of Natural Resources and Environmental Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran
4 Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
چکیده [English]

The effects of dietary aflatoxin B1 (AFB1) and zearalenone (ZEA) co-contamination on goldfish, Carassius auratus, was investigated. Total of 540 C. auratus fingerlings with an average body weight of 6.25±0.12g were randomly distributed in nine different experimental groups with 3 replicates comprised of three dietary levels of AFB1 (0, 50 and 100ppb) and ZEA (0, 500 and 1000ppb). Fish were fed with the experimental diets for 60 days. Then growth and nutritional indicate and pathology of gill and intestinal tissue were investigated. The results showed that dietary AFB1 and/or ZEA contamination depressed the growth performance, and nutritional indices of the experimental groups; the highest and lowest WG, final body weight, TGC and DGC were belonged to control group and AFB50ZEA1000, respectively (P<0.05). Although the nutritional indices, including PER, PPV and LER, were not significantly different among the experimental groups (P>0.05), the fish fed the diet containing 500 ppb ZEA had the lowest value of LPV (P<0.05). The highest intestine tissue inflammation (4.0±0.75) and necrosis (4.0±0.75) scores were observed in AFB100ZEA500 group (P>0.05). Also, the simultaneous presence of AFB1 and ZEA in the diet increased the severity of the gill tissue damage, including hyperplasia, congestion, hemorrhage, and lamellar fusion in almost all treatments containing AFB1 and ZEA (P<0.05). The results revealed that dietary co-contamination of AFB1 and ZEA could negatively affect fish performance at concentration even lower than those indicated in the literature implying that the safe feed mycotoxin thresholds would be revised in terms of fish welfare and performance.

کلیدواژه‌ها [English]

  • Mycotoxins
  • Growth
  • Pathology
  • Fish
  • Aquaculture
Agag, B.I., 2004. Mycotoxins in foods and feeds: 1. Aflatoxins. Assiut University Bulletin for Environmental Researches 7: 173-206.
Barany, A., Guilloto, M., Cosano, J., De Boevre, M., Oliva, M., De Saeger, S., Fuentes, J., Martínez-Rodríguez, G., Mancera, J.M., 2021. Dietary Aflatoxin B1 (AFB1) reduces growth performance, impacting growth axis, metabolism, and tissue integrity in juvenile gilthead sea bream (Sparus aurata). Aquaculture 533, 736189.
Bennett, J.W., Klich, M., 2003. Mycotoxins. Clinical Microbiology Review 16(3), pp: 497-516.
Coppock, R.W., Christian, R.G., Jacobsen, B.J., 2018. Aflatoxins. In Veterinary Toxicology. Academic Press, pp: 983-994.
Ezdini, K., Salah-Abbès, J.B., Belgacem, H., Mannai, M., Abbès, S., 2020. Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 185, 46-56.
Ghafarifarsani, H., Imani, A., Niewold, T.A., Pietsch-Schmied, C., Moghanlou, K. S., 2021b. Synergistic toxicity of dietary Aflatoxin B1 (AFB1) and Zearalenone (ZEA) in rainbow trout (Oncorhynchus mykiss) is attenuated by anabolic effects. Aquaculture 541, 736793.
Ghafarifarsani, H., Kachuei, R., Imani, A., 2021a. Dietary supplementation of garden thyme essential oil ameliorated the deteriorative effects of Aflatoxin B1 on growth performance and intestinal inflammatory status of rainbow trout (Oncorhynchus mykiss). Aquaculture 531, 735928.
Gonçalves, R.A., Schatzmayr, D., Albalat, A., Mackenzie, S. 2020. Mycotoxins in aquaculture: Feed and food. Reviews in Aquaculture 12(1), 145-175.
Greco, M., Pardo, A., Pose, G., 2015.  Mycotoxigenic fungi and natural co-occurrence of mycotoxins in rainbow trout (Oncorhynchus mykiss) feeds. Toxins 7, 4595-4609.
Hegazi, S., El-sabagh, M., El-Keeidy, A., Zein El-Dein, A.I., 2013. Aflatoxin in feed and its effect on fish health. Kafrelsheikh Veterinary Medical Journal 11(2), 317-329.
Hooft, J.M., Elmor, A.E.H.I., Encarnação, P., Bureau, D.P., 2011. Rainbow trout (Oncorhynchus mykiss) is extremely sensitive to the feed-borne fusarium mycotoxin deoxynivalenol (DON). Aquaculture 311(1), 224-232.
Hueza, I.M., Raspantini, P.C.F., Raspantini, L.E.R., Latorre, A.O., Górniak, S.L., 2014. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound, Toxins 6(3), 1080-95.
Imani, A., Bani, M.S., Noori, F., Farzaneh, M., Moghanlou, K.S., 2017. The effect of bentonite and yeast cell wall along with cinnamon oil on aflatoxicosis in rainbow trout (Oncorhynchus mykiss): Digestive enzymes, growth indices, nutritional performance and proximate body composition. Aquaculture 476, 160-167.
Imani, A., Sarvi Moghanlou, K., Ghafarifarsani, H., Mahmoudi, S.S., Noori, F., Farzaneh, M., 2020. Histopathological effect of Aflatoxin B1 on some internal tissues of rainbow trout (Oncorhynchus mykiss). Journal of Fisheries 73(2), 149-161. (In Persian)
Kowalska, K., Habrowska-Górczynska, D.E., Piastowska-Ciesielska, A.W., 2016. Zearalenone as an endocrine disruptor in humans. Environmental Toxicology and Pharmacology 48, 141-149.
Malekinejad, H., Agh, N., Vahabzadeh, Z., Varasteh, S., Alavi, M.H., 2012. In vitro reduction of zearalenone to β-zearalenol by rainbow trout (Oncorhynchus mykiss) hepatic microsomal and post-mitochondrial subfractions. Iranian Journal of Veterinary Research 13(1), 28-35.
Marroquín-Cardona, A.G., Johnson, N.M., Phillips, T.D., Hayes, A.W., 2014. Mycotoxins in a changing global environment - A review. Food and Chemical Toxicology 69, 220-230.
Matejova, I., 2017. Impact of mycotoxins on aquaculture fish species: A review. Journal of the World Aquaculture Society 48, 186-200.
Mohammadi, G., Rashidian, G., Hoseinifar, S.H., Naserabad, S.S., Van Doan, H., 2020. Ginger (Zingiber officinale) extract affects growth performance, body composition, haemaology, serum and mucosal immune parameters in common carp (Cyprinus carpio). Fish and Shellfish Immunology 99, 267-273.
Muthulakshmi, S., Maharajan, K., Habibi, H.R., Kadirvelu, K., Venkataramana, M. 2018. Zearalenone induced embryo and neurotoxicity in zebrafish model (Daniorerio): role of oxidative stress revealed by a multi biomarker study. Chemosphere 198, 111-121.
Mwihia, E.W., Lyche, J.L., Mbuthia, P.G., Ivanova, L., Uhlig, S., Gathumbi, J.K., Maina, J.G., Eshitera, E.E., Eriksen, G.S., 2020. Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya. Toxins 12(10), 627.
Odongo, G. A., Schlotz, N., Baldermann, S., Neugart, S., Ngwene, B., Schreiner, M. and Lamy, E., 2018. Effects of Amaranthus cruentus L. on Aflatoxin B1-and oxidative stress-induced DNA damage in human liver (HepG2) cells. Food Bioscience 26, 42-48.
Pietsch, C., 2017. Zearalenone (ZEA) and its influence on regulation of gene expression in carp (Cyprinus carpio L.) liver tissue. Toxins 9(9), 283.
Pietsch, C., 2020. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Research 36(1), 41-62.
Pietsch, C., Kersten, S., Burkhardt-Holm, P., Valenta, H., Dänicke, S., 2013. Occurrence of deoxynivalenol and Zearalenone in commercial fish feed: An initial study. Toxins 5(1), 184-192.
Pitt, J.I., Taniwaki, M.H., Cole, M.B. 2013. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of Food Safety Objectives. Food Control 32(1), 205-215.
Ryu, D., Hanna, M.A., Eskridge, K.M., Bullerman, L.B., 2003. Heat stability of Zearalenone in an aqueous buffered model system. Journal of Agricultureal and Food Chemistry 51, 1746-1748.
Santacroce, M.P., Conversano, M.C., Casalino, E., Lai, O., Zizzadoro, C., Centoducati, G., Crescenzo, G., 2008. Aflatoxins in aquatic species: metabolism, toxicity and perspectives. Reviews in Fish Biology and Fisheries 18(1), 99-130.
Sergent, T., Ribonnet, L., Kolosova, A., Garsou, S., Schaut, A., De Saeger, S., Van Peteghem, C., Larondelle, Y., Pussemier, L., Schneider, Y.J., 2008. Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food and Chemical Toxicology 46(3), 813-841.
Shen, H.M., Shi, C.Y., Shen, Y., Ong, C.N., 1996. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with Aflatoxin B1. Free Radical Biology Medicine 21, pp: 139–146.
Sherratt, P.J., Hayes, J.D., 2001. Glutathione S-transferases. Enzyme Systems That Metabolise Drugs and Other Xenobiotics 9, 219-252.
Spring, P., Fegan, D.F. 2005. Mycotoxins a rising threat to aquaculture. Nutritional biotechnology in the feed and food industries. Proceedings of Alltech's 21st Annual Symposium, Lexington, Kentucky, USA, pp: 323-331.
Tasa, H., Imani, A., Moghanlou, K.S., Nazdar, N., Moradi-Ozarlou, M., 2020. Aflatoxicosis in fingerling common carp (Cyprinus carpio) and protective effect of rosemary and thyme powder: Growth performance and digestive status. Aquaculture 527, 735437.
Wang, Y.L., Zhou, X.Q., Jiang, W.D., Wu, P., Liu, Y., Jiang, J., Wang, S.W., Kuang, S.Y., Tang, L., Feng, L., 2019. Effects of dietary Zearalenone on oxidative stress, cell apoptosis, and tight junction in the intestine of juvenile grass carp (Ctenopharyngodon idella). Toxins 11(6), 333.
Woźny, M., Obremski, K., Jakimiuk, E., Gusiatin, M., Brzuzan, P., 2013. Zearalenone contamination in rainbow trout farms in north-eastern Poland. Aquaculture 416, pp: 209-211.
Wu, J., Du, H., Wu, J., Luo, J., Fu, P., Qiao, X., Wei, Q., 2021. Effects of dietary Zearalenone on the serum biochemistry, hepatic and intestinal histology, and intestinal microbiota of juvenile Dabry′ s sturgeon (Acipenser dabryanus). Journal of Applied Ichthyology 37(6), 932-941.
You, L., Wang, X., Wu, W., Jaćević, V., Nepovimova, E., Wu, Q., Kuca, K., 2021. Hypothesis: Long non-coding RNA is a potential target of mycotoxins. Food and Chemical Toxicology 155, 112397.