بهینه‌سازی تخریب دیوارة سلولی، غلظت بافر استخراج و ارزیابی خصوصیات کارکردی رنگدانه فایکواریترین از درشت جلبک قرمز دریای خزر Osmundea caspica (Rhodomelaceae, Rhodophyta)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه محیط زیست، دانشگاه کشاورزی و منابع طبیعی گرگان، گلستان، ایران

2 کارشناس مرکز تحقیقات علوم شیلاتی و فنون دریایی دکتر کیوان، دانشگاه آزاد لاهیجان، گیلان، ایران

3 استادیار موسسه تحقبقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22059/jfisheries.2023.356631.1374

چکیده

فایکواریترین به‌عنوان رنگدانه طبیعی با خاصیت فلورسانس و آنتی‌اکسیدانی دارای پتانسیل خوبی در صنایع غذایی و پزشکی است. این مطالعه جهت بهینه ‏سازی روش استخراج تحت تأثیر غلظت بافر سدیم فسفات، نسبت بافر به جلبک و نوع تخریب فیزیکی دیوارة سلولی در درشت جلبک قرمز دریای خزر Osmundea caspica در قالب یک طرح کاملاً تصادفی جهت بررسی میزان خلوص، غلظت رنگدانه، فعالیت آنتی‌اکسیدانی و خاصیت فلورسانس رنگدانه فایکواریترین انجام شد. در این مطالعه روش انجماد-انجماد‌زدایی برای استخراج مورد استفاده قرار گرفت، نتایج این مطالعه تفاوت معنی ‏داری از نظر میزان خلوص و غلظت رنگدانه تحت تأثیر متغیرهای مورد بررسی نشان داد (0/05>P). بیشترین میزان خلوص و غلظت رنگدانه در تیمار 100 میلی مولار سدیم فسفات بافر به‌ترتیب نسبت 1 به 20 جلبک به بافر (وزنی-حجمی) و 1 به 5 به میزان 0/33 و 1 میلی‏گرم بر گرم جلبک تر به‌دست آمد. بنابراین، با افزایش غلظت یونی بافر میزان خلوص و غلظت رنگدانه افزایش می‌یابد ولی با افزایش نسبت بافر به جلبک، میزان خلوص کاهش و میزان غلظت رنگدانه (میلی‌گرم بر گرم جلبک تر) افزایش خواهدیافت. فعالیت آنتی ‏اکسیدانی در غلظت‌های مختلف 2 تا 10 میلی‌گرم در میلی‌لیتر به روش DPPH و همچنین خاصیت فلورسانس فایکواریترین استخراج شده مورد ارزیابی قرار گرفت و نتایج نشان داد که ویژگی فایکواریترین از نظر فعالیت آنتی‏ اکسیدانی و خاصیت فلورسانس به غلظت وابسته  است و با افزایش میزان فایکواریترین فعالیت آنتی‌اکسیدانی و خاصیت فلورسانس افزایش می ‏یابد. بنابراین، فایکواریترین به‌دست آمده در بافر 100 میلی مولار در مرحلة استخراج با خلوص نزدیک به 1 را می‌تواند با هدف کاربرد در صنایع غذایی معرفی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of cell wall degradation, extraction buffer concentration and evaluation of functional properties of phycoerythrin pigment from Caspian red macroalgae, Osmundea caspica (Rhodomelaceae, Rhodophyta)

نویسندگان [English]

  • Hamid Eshaghzadeh 1
  • Maryam Shahbazi 2
  • Ali Naghi Sarpanah 3
1 Associate Professor, Department of Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
2 Scientific Expert, Keyvan Marine Science and Technology Research Center, Islamic Azad University (IAU), Lahijan Branch, Lahijan, Iran
3 Assistant Professor, Iranian fisheries science research institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
چکیده [English]

Phycoerythrin (PE) is a naturally produced colorant with great fluorescent and antioxidant properties, which has an important potential in food pharmaceutical industries. This study was conducted by randomly experimental design in order to optimize the phycoerythrin extraction under different independent variable (biomass: buffer ratio, buffer ionic strength and cellular disruption method) from Caspian Sea red macroalgae (Osmundea caspica). Purity and concentrations of PE changed significantly under different treatments (P<0.05). The highest PE purity and concentrations was obtained in 100Mm sodium phosphate buffer and 1:20 biomass: buffer ratio. Therefore, the positive correlation has been observed between increasing levels of buffer ionic strength with PE purity and concentrations while lowest PE purity and highest PE concentrations (mg/gr fresh algae) were obtained with increasing level of biomass: buffer ratio. Antioxidant activity of extracted PE was evaluated by measuring the free radical scavenging ability using DPPH. PE was found to have better free radical scavenging activity at highest concentration with dose-dependent manner. Therefore, the obtained phycoerythrin in 100mM buffer in the extraction process approximatlly with a purity of one can be introduced with the aim of application in the food industry.

کلیدواژه‌ها [English]

  • Seaweed
  • Osmundea caspica
  • Caspian Sea
  • Extraction
  • Phycoerythrin
Baghel R.S., Reddy C., Jha B., 2014. Characterization of agarophytic seaweeds from the biorefinery context. Bioresource Technology 159(5), 280-285.
Burits M., Bucar F., 2000. Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research 14(5), 323-328.
Chen C.L., Chang J.S., Lee D.J., 2015. Dewatering and drying methods for microalgae. Drying Technology 33(4), 443-454.
Dewi N., Santoso J., Setyaningsih I., Hardingtyas S., 2020. Extraction of phycoerythrin from Kappaphycus alvarezii seaweed using ultrasonication. In: the IOP Conference Series: Earth and Environmental Science. Bristol.UK. pp: 1-8.
Da Costa Ores J., De Amarante M.C.A., Kalil S. J., 2016. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresource Technology 219‌(1), 219-227.
Denis C., Ledorze C., Jaouen P., Fleurence J., 2009. Comparison of different procedures for the extraction and partial purification of R-phycoerythrin from the red macroalga Grateloupia turuturu. Botanica Marina 52(3), 278-281.
Dumay J., Clément N., Morançais M., Fleurence J., 2013. Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresource Technology 131(1), 21-27.
Dumay J., Morançais M., 2016. Proteins and pigments Seaweed in health and disease prevention Elsevier. pp: 275-318.
Eriksen N.T., 2008. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology 80(1), 1-14.
Estrada J.P., Bescós, P.B., Del Fresno A.V., 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco II 56(5-7), 497-500.
Fekrat F., Nami B., Ghanavati H., Ghafari A., Shahbazi M., 2019. Optimization of chitosan/activated charcoal-based purifcation of Arthrospira platensis phycocyanin using response surface methodology. Journal of Applied Phycology 31(2), 1095-1105.
Karpinsky M.G., Shiganova T.A., Katunin D.N., 2005. Introduced species. In: Kostianoy, A.G., Kosarev, A.N. (eds) The Caspian Sea Environment. Springer, Berlin, pp: 175-190.
Li W., Su H.N., Pu Y., Chen J., Liu L.N., Liu Q., Qin S., 2019. Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnology Advances 37(2), 340-353.
Liu L.N., 2016. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. Biochimicaet Biophysica Acta (BBA)-Bioenergetics 1857(3), 256-265.
Liu M.Q., Yang X.Q., Qi B., Li L.H., Deng J. C., Hu, X., 2013. Study of Ultrasonic-freeze-thaw-cycle assisted extraction of polysaccharide and phycobiliprotein from Gracilaria lemaneiformis. Advanced Materials Research 781, 1818-1824.
Mehdipour N., Sheijooni Fumani N., Rahnama R., 2014. Proximate and fatty acid composition of the southern Caspian Sea macroalgae, Journal of Persian Gulf 5(18), 63–72
Mittal R., Raghavarao K., 2018. Extraction of R-Phycoerythrin from marine macro-algae, Gelidium pusillum, employing consortia of enzymes. Algal Research 34, 1-11.
Mittal R., Sharma R., Raghavarao K., 2019. Aqueous two-phase extraction of R-Phycoerythrin from marine macro-algae, Gelidium pusillum. Bioresource technology 280, 277-286.
Moshfegh A., Salehzadeh A., Sadat Shandiz S.A., Shafaghi M., Naeemi A.S., Salehi, S., 2019. Phytochemical analysis, antioxidant, anticancer and antibacterial properties of the Caspian Sea red macroalgae, Laurencia caspica. Iranian Journal of Science and Technology, Transactions A: Science 43(1), 49-56.
Munier M., Morancais M., Dumay J., Jaouen P., Fleurence J., 2015. One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. Journal of Chromatography B 992 (15), 23-29.
Munier M., Dumay J., Morançais M., Jaouen P., Fleurence J., 2013. Variation in the biochemical composition of the edible seaweed Grateloupia turuturu Yamada harvested from two sampling sites on the Brittany coast (France): The influence of storage method on the extraction of the seaweed pigment R-phycoerythrin. Journal of Chemistry 2013, 1-8.
Niu J.F., Wang G.C., Tseng C.K., 2006. Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expression and Purification 49(1), 23-31.
Nguyen H.P.T., Morançais M., Fleurence J., Tran T.N. L., Dumay, J., 2018. Extracting and purifying pigment R-phycoerythrin from the red alga Mastocarpus stellatus. Fourth international conference on green technology and sustainable development (GTSD). Ho Chi Minh City, Vietnam.
Patil G., Raghavarao K., 2007. Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal 34(2), 156-164.
Pereira T., Barroso S., Mendes S., Amaral R. A., Dias J.R., Baptista T., Gil M.M., 2020. Optimization of phycobiliprotein pigments extraction from red algae Gracilaria gracilis for substitution of synthetic food colorants. Food chemistry 321, 126688.
Reboleira J., Ganhão R., Mendes S., Adão P., Andrade, M., Vilarinho F., Bernardino S., 2020. Optimization of extraction conditions for Gracilaria gracilis extracts and their antioxidative stability as part of microfiber food coating additives. Molecules, 25(18), 4060.
Richa K.V., Kesheri M., Singh G., Sinha R., 2011. Biotechnological potentials of phycobiliproteins. International Journal of Pharma Bio Sciences 2, 446-454.
Rousseau F., Gey D., Kurihara A., Maggs C.A., Martin-Lescanne J., Payri C., 2017. Molecular phylogenies support taxonomic revision of three species of Laurencia (Rhodomelaceae, Rhodophyta), with the description of a new genus. European Journal of Taxonomy 269(2):1–19.
Saluri M., Kaldmäe M., Tuvikene R.J.A., 2019. Extraction and quantification of phycobiliproteins from the red alga Furcellaria lumbricalis. Algal Research 37, 115-123.
Samsonoff W.A., MacColl R., 2001. Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of Microbiology 176(6), 400-405.
Sekar S., Chandramohan M., 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology 20(2), 113-136.
Senthilkumar, N., Suresh, V., Thangam, R., Kurinjimalar, C., Kavitha, G., Murugan, P., Rengasamy, R., (2013). Isolation and characterization of macromolecular protein R-Phycoerythrin from Portieria hornemannii. International Journal of Biological Macromolecules 55(1), 150-160.
Silveira S.T., Burkert J.D. M., Costa J.A.V., Burkert C.A.V., Kalil, S.J., 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology 98(8), 1629-1634.
Sonani R.R., Patel S., Bhastana B., Jakharia K., Chaubey M.G., Singh N.K., Madamwar D., 2017. Purification and antioxidant activity of phycocyanin from Synechococcus sp. R42DM isolated from industrially polluted site. Bioresource Technology 245, 325-331.
Sudhakar M., Jagatheesan A., Perumal K., Arunkumar K., 2015. Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Research 8(1), 115-120.
Tan H. T., Khong N.M., Khaw Y.S., Ahmad S.A., Yusoff F.M., 2020. Optimization of the freezing-thawing method for extracting phycobiliproteins from Arthrospira sp. Molecules 25(17), 3894.
Timasheff S.N., Arakawa T., 1988. Mechanism of protein precipitation and stabilization by co-solvents. Journal of Crystal Growth 90(1-3), 39-46.
Vali Aftari R., Rezaei K., Mortazavi A., Bandani A.R., 2015. The optimized concentration and purity of Spirulina platensis C‐phycocyanin: a comparative study on microwave‐assisted and ultrasound‐assisted extraction methods. Journal of Food Processing and Preservation 39(6), 3080-3091.
Wang L., Wang S., Fu X., Sun L., 2015. Characteristics of an R-Phycoerythrin with two γ subunits prepared from red macroalga Polysiphonia urceolata. PLoS One, 10(3), e0120333.
Wu H. L., Wang G.H., Xiang W.Z., Li T., He H., 2016. Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349-2362.
Zhou Z.P., Liu L.N., Chen X.L., Wang J.X., Chen M., Zhang, Y.Z., Zhou, B.C., 2005. Factors that affect antioxidant activity of C‐phycocyanins from Spirulina platensis. Journal of Food Biochemistry, 29(3), 313-322.