ردیابی مولکولی نمونه‌های مشکوک مولدین تاسماهی شیب (Acipenser nudiventris) به هیبرید بودن با دیگر تاسماهیان

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار انستیتو بین‌المللی تاسماهیان دریای خزر، سازمان تحقیقات، آموزش وترویج، رشت، ایران

10.22059/jfisheries.2023.344812.1336

چکیده

احتمال هیبریداسیون تاسماهیان در طبیعت گزارش شده است اما گاهی اوقات در مراکز تحقیقاتی دولتی و خصوصی، امکان هیبریداسیون گونه‌های مختلف تاسماهیان با هم به‌دلیل کمبود اسپرم یک گونه یا تعداد بیشتر تخمک وجود دارد. اگر تعداد کروموزوم دو گونه یکسان باشد؛ فرزندان هیبرید بارور و بسیار شبیه به والدین هستند اما به‌دلیل اینکه تکثیر معمولاً برای حفاظت گونه‌ای انجام می‌شود؛ استفاده از مولدین هیبرید برای رسیدن به جمعیت خالص آن گونه مناسب نیست و باید از روش‌های مختلف تشخیصی مانند روش‌های مولکولی برای تشخیص گونه‌های دورگه و خالص استفاده کرد. در این تحقیق از هفت بافت بالة مشکوک تاسماهی شیپ نمونه‌برداری DNA انجام شده و بافت‌ها در الکل 96 درصد نگهداری شد و DNA به روش استات آمونیوم استخراج شد. تعیین جنسیت با استفاده از نشانگرهای هسته‌ای لوکوس ماده انجام شده و  یک نشانگر ژن میتوکندری و دو نشانگر ژنوم هسته‌ای برای شناسایی گونه‌ها و هیبریدها استفاده شد.  شناسایی گونه‌ای تاسماهی مشکوک با نشانگر میتوکندری نشان داد که هر هفت ماهی دارای ژنوم مادری ماهی شیپ هستند و براساس دو نشانگر هسته‌ای با فیل ماهی، هیبرید می‌باشند. این تحقیق به درستی نشان داد که با  تلفیق داده‌های مولکولی میتوکندری و هسته‌ای می‌توان گونه‌ها و هیبرید‌های تاسماهیان را از هم تشخیص داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular identification of suspected samples of Fringebarbel sturgeon (Acipenser nudiventris ) breeder hybridizing with other sturgeons

نویسنده [English]

  • Shirin Jamshidi
Assistant professor, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
چکیده [English]

The possibility of hybridization of sturgeon has been reported in nature, but sometimes in public and private breeding centers and research centers, it is possible different sturgeon species hybridize together artificially due to the lack of sperm of the same species or more eggs. If the chromosome number of the two species is the same, the hybrid offspring are fertile and very similar to the parents, but because reproduction is usually done for conservation; The use of hybrid breeders to reach the pure population of that species is not appropriate and different diagnostic methods such as molecular methods should be used to distinguish pure hybrid species. In this research, seven suspected fin tissue of Acipenser nudiventris were sampled and stored in 96% alcohol and DNA was extracted in a molecular laboratory by ammonium acetate method. Sex determination was done by using female locus markers and a mitochondrial gene marker and two nuclear markers were applied for species and hybrid identification. Barcoding of suspected A. nudiventris with mitochondrial marker showed all seven fish have maternal genome of A. nudiventris and they are hybrid with Beluga according two nuclear markers. This research properly showed it is possible to distinguish sturgeon genome and hybrids with compilation of mitochondrial and nuclear molecular data.

کلیدواژه‌ها [English]

  • Acipenser nudiventris
  • Hybrid
  • Molecular identification
  • Mitochondrial and nuclear markers
Aljanabi, M., Martinez, L., 1997. Universal and rapid salt-extraction of high-quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25(222), 4692-4693.
Arefyev, V.A., 1997. Sturgeon hybrids: natural reality and practical prospects. Aquaculture Magazine 23(3), 52-58.
Bacalbasa-Dobrovici, N., 1997. Endangered migratory sturgeons of the lower Danube River and its delta. Sturgeon Biodiversity and Conservation, pp: 201-207.
Barmintseva, A.E., Mugue, N.S., 2013. The use of microsatellite loci for identification of sturgeon species (Acipenseridae) and hybrid forms. Russian Journal of Genetics 49, 950-961.
Birstein, V. J., Hanner, R., DeSalle, R., 1997. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Sturgeon Biodiversity and Conservation pp: 127-155.
Boscari, E., Barminsteva, A., Pujolar, J. M., Doukakis, P., Mugue, N., Congiu, L., 2014. Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade. Molecular Ecology Resources 14(3), 489-498.
Boscari, E., Vidotto, M., Martin, D., Papetti, C., Ogden, R., Congiu, L., 2015. Microsatellites from the genome and the transcriptome of the tetraploid Adriatic sturgeon, Acipenser naccarii (Bonaparte, 1836) and cross-species applicability to the diploid beluga sturgeon, Huso huso (Linnaeus, 1758). Journal of Applied Ichthyology 31(6), 977-983.
Boscari, E., Vitulo, N., Ludwig, A., Caruso, C., Mugue, N.S., Suciu, R., Congiu, L., 2017. Fast genetic identification of the Beluga sturgeon and its sought-after caviar to stem illegal trade. Food Control 75, 145-152.
Costa, F.O., DeWaard, J.R., Boutillier, J., Ratnasingham, S., Dooh, R.T., Hajibabaei, M., Hebert, P.D., 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64(2), 272-295.
Dudu, A., Georgescu, S. E., Berrebi, P., Costache, M., 2012. Site heteroplasmy in the mitochondrial cytochrome b gene of the sterlet sturgeon Acipenser ruthenus. Genetic and molecular Biology 35(4), 886-891.
Dudu, A., Suciu, R., Paraschiv, M., Georgescu, S. E., Costache, M., Berrebi, P., 2011. Nuclear markers of Danube sturgeons' hybridization. International journal of molecular Sciences 12(10), 6796-6809.
Dudu, A.; Samu, M.; Maereanu, M.; Georgescu, S.E. 2022. A Multistep DNA-Based Methodology for Accurate Authentication of Sturgeon Species. Foods 11(7), 1007.
Havelka, M, Kašpar, V., Hulák, M., Flajšhans, M., 2011. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zoologica 60(2), 93-103.
Havelka, M., Fujimoto, T., Hagihara, S., Adachi, S., Arai, K., 2017. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Scientific Reports 7(1), 1-8.
Hebert, P.D., Cywinska, A., Ball, S.L., DeWaard, J.R., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270(1512), 313-321.
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., Francis, C.M., 2004. Identification of birds through DNA barcodes. PLoS biology 2(10), e312.
Ghadirnejad, H., 2009. Barcoding of Five Sturgeon Species in Iran'Hassan Ghadirnejad, *" MN Siti Azizah," Aliakbar Salehi," Kamran Aghili,“Katialisa Kamaruddin,“A FJ Jamsari and “Lim Hong Chiun" Golestan Fisheries Research Center (GFRC), PO Box 139, Gorgan, Golestan Province, Iran “School of Biological Sciences, University Sains Malaysia, Penang, Malaysia. Journal of Molecular Genetics l 2(4), 29-34.
Johnson, T.A., Iyengar, A., 2015. Phylogenetic evidence for a case of misleading rather than mislabeling in caviar in the United Kingdom. Journal of Forensic Science 60 (Suppl 1), S248-53.
Krieger, J., Hett, A. K., Fuerst, P. A., Artyukhin, E., Ludwig, A. 2008. The molecular phylogeny of the order Acipenseriformes revisited. Journal of Applied Ichthyology 24, 36-45.
Kuhl, H., Guiguen, Y., Höhne, C., Kreuz, E., Du, K., Klopp, C., Lopez-Roques, C., Yebra-Pimentel, E.S., Ciorpac, M., Gessner, J., Holostenco, D., 2021. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philosophical Transactions of the Royal Society B 376(1832), 20200089.
Ludwig, A., May, B., Debus, L., Jenneckens, I., 2000. Heteroplasmy in the mtDNA Control Region of Sturgeon (Acipenser, Huso and Scaphirhynchus), Genetics, Volume 156, Issue 4, 1 December 2000, pp: 1933-1947.
Ludwig, A., Debus, L., Jenneckens, I., 2002. IV. Chemical and Biochemical Composition of Sturgeon Products a Molecular Approach to Control the International Trade in Black Caviar. International Review of Hydrobiology, 87(5), 661-674.
Ludwig, A. 2008. Identification of Acipenseriformes species in trade. Journal of Applied Ichthyology 24, 2-19.
Mugue, N.S., Barmintseva, A. E., Rastorguev, S., M., Mugue, V.N., Barmintsev V., 2008.  Polymorphism of the mitochondrial DNA control region in eight Sturgeon species and development of a system for DNA-based species identification. Russian Journal of Genetics 44(7), 793-798.
Ogden, R., Gharbi, K., Mugue, N., Martinsohn, J., Senn, H., Davey, J.W., Pourkazemi, M., McEwing, R., Eland, C., Vidotto, M., Sergeev, A. 2013. Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Molecular Ecology 22(11), 3112-3123.
Rehbein, H., 2013. Difference of fish species by PCR-based DNA analysis of nuclear genes. European Food Research and Technology 236, 979-990.
Rozhkovan, K.V., Chelomina, G.N., Rachelek, E.I. 2008. Molecular identification and the features of genetic diversity in interspecific hybrids of Amur sturgeon (Acipenser schrenckii x A. baerii, A. baerii x A. schrenckii, A. schrenckii x A. ruthenus, and A. ruthenus x A. schrensckii) based on variability of multilocus RAPD markers. Genetika 44, 1453-1460.
Ward, R.D., Zemlak, T.S., Innes, B. H., Last, P.R., Hebert, P.D., 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1462), 1847-1857.
Waraniak, J.M., Blumstein, D.M., Scribner, K.T., 2018. Barcoding PCR primers detect larval lake
sturgeon (Acipenser fulvescens) in diets of piscine predators. Conservation Genetics Resources 10(2), 259-268.
Zhang, X., Tinacci, L., Xie, S., Wang, J., Ying, X., Wen, J., Armani, A., 2022. Caviar products sold
on Chinese Business to customer (B2C) online platforms: Labelling assessment supported by molecular identification. Food Control 131, 108370.