معرفی عوامل ضدتغذیه ای موجود در اقلام خوراکی با منشاءگیاهی و راهکارهای کاهش محتوای آن ها

نوع مقاله : مروری

نویسندگان

1 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

2 دانشجوی دکتری گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

10.22059/jfisheries.2023.352551.1356

چکیده

با رشد صنعت آبزی ­پروری و عرضة محدود پودر ­ماهی، استفاده از مواد گیاهی مانند دانه‌های حبوبات (لوپین و نخود)، دانه‌های روغنی (سویا، پنبه­، کلزا و آفتابگردان)، غلات (ذرت، برنج و گندم) را ضروری می‌سازد. کنجالة برگ­ های غنی از پروتئین، کنسانتره و ایزولة دانه ­های روغنی غیرخوراکی (جاتروفا، کرچک و چریش) به‌عنوان ترکیبات خوراک ماهی استفاده می­ شوند. با این­ حال، چالش اصلی در استفاده از ترکیبات گیاهی غنی از پروتئین در تغذیة ماهی، وجود عوامل ضد­تغذیه ­ای در این نهاده ­های خوراکی است. عوامل ضد تغذیه ­ای ترکیباتی هستند که استفاده از مواد مغذی و یا مصرف خوراک را در آبزیان کاهش می ­دهند و نقش مهمی در تعیین میزان استفاده از گیاهان در خوراک‌دهی حیوانات دارند. این عوامل می ­توانند باعث سوء­ تغذیه ریز­مغذی ­ها و کمبود مواد ­معدنی شوند. مهم­ترین عوامل ضد­تغذیه ­ای شامل مهارکننده ­های پروتئاز، اسید فیتیک، ساپونین، تانن، سیانید، اگزالات، گوسیپول، پلی­ساکاریدهای غیرنشاسته ­ای، فیتواستروژن­ ها، میموزین و مایکوتوکسین ­ها هستند. روش ­ها و فناوری­ های متداول مختلفی وجود دارد که می ­توان از آن­ها برای کاهش سطوح این عوامل ضد ­مغذی استفاده کرد. چندین فناوری و روش فرآوری مانند تخمیر، جوانه­زنی، سبوس­زدایی، اتوکلاو نمودن، خیساندن و ... برای کاهش محتوای ضد­مغذی در غذاها استفاده می­ شود. با این حال، مطالعه و شناخت شیوه ­های مؤثر و بهینه‌سازی شرایط بکارگیری آن­ ها همچنان از اهمیت زیادی برخوردار است. علاوه براین، هر گونة آبزی یک آستانة تحمل امن برای هر یک از مواد ضد تغذیه­ ای برخوردار است، که پیش از انتخاب شیوة فرآوری باید مدنظر قرار گیرد. مؤلفه ­های دیگری چون آثار محیط زیستی و ملاحظات اقتصادی شیوة فرآوری مورد نظر نیز مستلزم توجه ویژه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing antinutritional factors in plant origin fish feed ingredients and strategies to reduce their contents

نویسندگان [English]

  • Ahmad Imani 1
  • Zahra Mahmoudikiya 2
1 Associate professor, Department of, Faculty of Natural Resources, Urmia University, Urmia, Iran
2 PhD student, Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
چکیده [English]

Due to rapid aquaculture development, limited supply of fishmeal and its increasing cost and demand, using plant derived feed ingredients such as legumes (lupin and peas), oil seed cakes (soy bean, cottonseed, and rape seed), cereals (corn, rice and wheat), meals of protein rich leaves, concentrates and isolate of non-edible oil seeds (jatropha, castor and neem) as fish feed ingredients is compulsory. However, the major challenge in utilizing the protein rich plant ingredients is the presence of anti-nutritional factors. Anti-nutritional factors are compounds which reduce the nutrient utilization and/or feed intake of aquatic animals and are important in plant origin feed ingredient contents of feed formulation. These factors can cause malnutrition or reduced micronutrients and minerals uptake. The most important anti-nutritional factors include protease inhibitors, phytic acid, saponin, tannin, cyanide, oxalate, gossypol, non-starch polysaccharides, phytoestrogens, mimosine and mycotoxins. There are various traditional and recent technologies, which can be used to reduce the levels of such anti-nutrient factors. Several processing techniques including fermentation, germination, dehulling, autoclaving, soaking etc. are applicable to reduce the anti-nutrient contents of ingredients. However, investigating and appreciation of effective methods and optimizing the conditions of their application is still very demanding. In addition, each aquatic species has tolerable threshold for each of the anti-nutritional substances, which should be considered before choosing the processing method. Other issues including the environmental concerns of the processing method and its economic viability also deserve special attention.

کلیدواژه‌ها [English]

  • Anti-nutritional factors
  • processing
  • plant feed ingredients
  • Aquafeed
Falah, M., Dastar, B., Ganji, F., Ashayerizadeh, A., 2016. Effects of fermented soybean meal and dietary protein level on performance and gasterointestinal microbial population in broiler chickens. Animal Sciences Journal 28(109), 53-66. (in Persian). DOI: 10.22092/ASJ.2016.106085
Ayet, G., Burbano, C., Cuadrado, C., Pedrosa, M.M., Robredo, L.M., Muzquiz, M., Osagie, A., 1997. Effect of germination, under different environmental conditions, on saponins, phytic acid and tannins in lentils (Lens culinaris). Journal of the Science of Food and Agriculture 74(2), 273-279. DOI: 10.1002/(SICI)1097-0010(199706)74:2<273::AID-JSFA800>3.0.CO2-L
Bureau, D.P., Harris, A. M., Bevan, D.J., Simmons, L.A., Azevedo, P.A., Cho, C.Y., 2000. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture 181(3-4), 281-291. DOI: 10.1016/S0044-8486(99)00232-X
Choct, M., Dersjant-Li, Y., McLeish, J., Peisker, M., 2010. Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australasian Journal of Animal Sciences 23(10), 1386-1398. DOI: 10.5713/ajas.2010.90222.
Diouf, A., Sarr, F., Sene, B., Ndiaye, C., Fall, S.M., Ayessou, N.C., 2019. Pathways for reducing anti-nutritional factors: Prospects for Vigna unguiculata. Journal of Nutritional Health & Food Science 7(2), 1-10.‏ DOI:10.15226/JNHFS.2019.001157
D’Mello, J.P.F., Macdonald, A.M.C., 1998. Fungal toxins as disease elicitors. In Environmental Toxicology (pp. 267-304). CRC Press.‏ edited by J Rose. DOI: 10.4324/9780203305515
Donangelo, C.M., Trugo, L.C., Trugo, N.M.F., Eggum, B.O., 1995. Effect of germination of legume seeds on chemical composition and on protein and energy utilization in rats. Food Chemistry 53(1), 23-27. DOI: https://doi.org/10.1016/0308-8146(95)95781-Z
FAO., 2020. Food and Agriculture Organization of the United Nation. The State of World Fisheries and Aquaculture. Sustainability in Action. Rome. 1-244. DOI: 10.4060/ca9229en
Francis, G., Makkar, H.P., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3-4), 197-227.‏ DOI: https://doi.org/10.1016/S0044-8486(01)00526-9
Freeland, W.J., Calcott, P.H., Anderson, L.R., 1985. Tannins and saponin: interaction in herbivore diets. Biochemical Systematics and Ecology 13(2), 189-193.‏ DOI: 10.1016/0305-1978(85)90078-X
Ghafarifarsani, H., Kachuei, R., Imani, A., 2021. Dietary supplementation of garden thyme essential oil ameliorated the deteriorative effects of aflatoxin B1 on growth performance and intestinal inflammatory status of rainbow trout (Oncorhynchus mykiss). Aquaculture 531, 735928.‏ DOI: 10.1016/j.aquaculture.2020.735928
Ghafarifarsani, H., Imani, A., Niewold, T.A., Pietsch-Schmied, C., Moghanlou, K.S., 2021. Synergistic toxicity of dietary aflatoxin B1 (AFB1) and zearalenone (ZEN) in rainbow trout (Oncorhynchus mykiss) is attenuated by anabolic effects. Aquaculture 541, 736793.‏ DOI: 10.1016/J.AQUACULTURE.2021.736793
Ghosh, K., Ray, A.K., 2017. Aquafeed formulation using plant feedstuffs: Prospective application of fish-gut microorganisms and microbial biotechnology. In Soft chemistry and food fermentation (pp. 109-144). Academic Press. ‏DOI: 10.1016/B978-0-12-811412-4.00005-9
Ghosh, K., Ray, A.K., Ringo, E., 2019. Applications of plant ingredients for tropical and subtropical freshwater finfish: possibilities and challenges. Reviews in Aquaculture 11(3), 793-815. DOI:10.1111/raq.12258
Gopan, A., Sahu, N.P., Varghese, T., Sardar, P., Maiti, M.K., 2019a. Karanj protein isolate prepared from karanj seed cake: Effect on growth, body composition and physiometabolic responses in Labeo rohita fingerlings. Aquaculture Nutrition 26(3), 737-751. DOI:10.1111/anu.13033
Gopan, A., Lalappan, S., Varghese, T., Kumar Maiti, M., Peter, R.M., 2020. Anti-Nutritional Factors in Plant-Based Aquafeed Ingredients: Effects on Fish and Amelioration Strategies. Biosc.Biotech. Res. Comm. Thomson Reuters ISI Web of Science Clarivate Analytics USA and Crossref Indexed Journal pp. 01-09
Hajra, A.A., Mazumder, A., Verma, D.P., Ganguly, B.P., Mohanty, B.P., Sharma, A.P., 2013. Antinutritional factors in plant origin fish feed ingredients: the problems and probable remedies. Advances in Fish Research 5, 193-202. https://www.researchgate.net/publication/283318816
Imani, A., Salimi Bania, M., Noori, F., Farzaneh, F., Sarvi Moghanloua, K., 2017. The effect of bentonite and yeast cell wall along with cinnamon oil on aflatoxicosis in rainbow trout (Oncorhynchus mykiss): Digestive enzymes, growth indices, nutritional performance and proximate body composition. Aquaculture 476 (2017), 160-167. DOI: 10.1016/j. aquaculture.2017.04.023
Jirapa, P., Normah, H., Zamallah, M.M., Asmah, R., Mohamad, K., 2001. Nutritional quality of germinated cowpea flour (Vigna unguiculata) and its application in home prepared powdered weaning foods. Plant Foods for Human Nutrition 56, 203-16. DOI: 10.1023/a:1011142512750
Kiers J.L, Van Laeken A.E., Rombouts F.M., Nout M.J., 2000. In vitro digestibility of bacillus fermented soya bean. International Journal of Food Microbiolgy 60, 163-169. DOI: 10.1016/S0168-1605(00)00308-1. DOI: 10.1016/s0168-1605(00)00308-1
Lee, C.S., Donaldson, E.M., 2001. General discussion on reproductive biotechnology in finfish aquaculture. Aquaculture 197, 303-320. DOI: 10.1016/S0044-8486(01)00591-9
Liener, I.E., 1980. Toxic Constituents of Plant Foodstuffs. Academic Press, New York 10003, NY, pp. 1-502.
Liang, Q., Yuan, M. Xu, L., Lio, E., Zhang, F. Mou, H., Secundo, F., 2022. Application of enzymes as a feed additive in aquaculture. Marine Life Science and Technology 4, 208-221. DOI: 10.1007/s42995-022-00128-z
Lim S.J., Kim S.S., Pham M.A, Song J.W., Cha J.H., Kim J.D, Kim J.U., Lee K.J., 2010. Effects of fermented cottonseed and soybean meal with phytase supplementation on gossypol degradation, phosphorus availability, and growth performance of olive flounder (Paralichthys olivaceus). Fisheries and Aquatic Sciences 13, 284-293. DOI: 10.5657/fas.2010.13.4.284
Makkar, H.P.S., Francis, G., Becker, K., 2007. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1(9), 1371-1391.‏ DOI: 10.1017/S1751731107000298
Mahdi, T., Al-Kaisey, Abdul-Kader, H., Alwan, Mohammad, M.H., Saeed, A.H., 2003. Effect of gamma irradiation on antinutritional factors in broad bean. Radiation Physics and Chemistry 67, 493-496. DOI: 10.1016/S0969-806X(03)00091-4
Maas R.M., Verdegem M.C.J, Stevens, T.L., Schrama, J.W., 2020 Effect of exogenous enzymes (phytase and xylanase) supplementation on nutrient digestibility and growth performance of Nile tilapia (Oreochromis niloticus) fed different quality diets. Aquaculture 529, 723-735. DOI: 10.1016/j.aquaculture.2020.735723
Mohammadi, M.  Imani, A. Farhangi, M. Gharaei, A. Hafeziyeh, M., 2020. Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology. Aquaculture 734824. DOI: 10.1016/j.aquaculture.2019.734824
Mohammadi, M., Imani, A., Farhangi, M., Gharaei, A., Hafeziyeh, M., 2022. Efficacy of various processed canola meals to replace fish meal in Nile tilapia Oreochromis niloticus diet: Growth performance, digestive enzymes, immune parameters, and liver antioxidative status. Iranian Journal of Fisheries Sciences 21(4), 966-986. DOI: 10.22092/ijfs.2022.127517
Morgan, E.D., 2009. Azadirachtin, a scientific gold mine. Bioorganic and Medicinal Chemistry 17(12), 4096-4105. DOI: 10.1016/j.bmc.2008.11.081
Murugkar, D.A., Gulati, P. and Gupta, C., 2012. Effect of sprouting on physicalproperties and functional and nutritional components of multi-nutrient mixes. International Journal of Food and Nutritional Sciences 2(2), 8. DOI: ID: 41691149
Nath, H., Samtiya, M., Dhewa. T., 2022.  Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Human Nutrition and Metabolism 200147. DOI: 10.1016/j.hnm.2022.200147
Naylor, R., Hardy, R., Bureau, D., Chiu, A., Elliott, M., Farrell, A., Forster, I., Gatlin, D., Goldberg, R., Hua, K., Nichols, P., 2009. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences 106(36), 15103-15110. DOI: 10.1073/pnas.0905235106
Rahman, M. M., Abdullah, R. B., Wan Khadijah, W. E., Nakagawa, T., Akashi, R., 2013. Feed intake, digestibility and growth performance of goats offered napier grass supplemented with molasses protected palm kernel cake and soya waste. Asian Journal of Animal and Veterinary Advances 8(3), 527-534.‏ DOI: 10.3923/ajava.2013.527.534
Refstie, S., Storebakken, T., Roem, A.J., 1998. Feed consumption and conversion in Atlantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture 162, 301-312. DOI: 10.1016/S0044-8486(98)00222-1
Refstie, S., Sahlström, S., Bråthen, E., Baeverfjord, G., Krogedal, P., 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246, 331-345. DOI: 10.1016/j.aquaculture.2005.01.001
Sadati, F., Shahsavani, D and Baghshani, H., 2013. Biochemical alterations induced by sublethal cyanide exposure in common carp (Cyprinus carpio). Journal of Biological and Environmental Sciences 7(20): 65-69. DOI: ID: 37203508
Sadeghi, A.A., Shawrang, P., 2006. Effects of microwave irradiation on ruminal degradability and in vitro digestibility of canola meal. Animal Feed Science and Technology 127(1-2), 45-54. DOI: https://doi.org/10.1016/j.anifeedsci.2005.08.016
Sanz, A., Morales, A. E., De la Higuera, M., Gardenete, G., 1994. Sunflower meal compared with soybean meals as partial substitutes for fish meal in rainbow trout (Oncorhynchus mykiss) diets: protein and energy utilization. Aquaculture 128(3-4), 287-300.DOI: 10.1016/0044-8486(94)90318-2
Shawrang, P., Sadeghi, A.A., Behgar, M., Zareshahi, H., Shahhoseini, G., 2011. Study of chemical compositions, antinutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chemistry 125: 376-379. DOI: 10.1016/j.foodchem.2010.09.010
Siddhuraju, P., Makkar, H.P.S., Becker, K., 2002. The effect of ionizing radiation on antinutritonal factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry 78, 187-205. DOI: https://doi.org/10.1016/S0308-8146(01)00398-3
Smith, K.J., 1970. Practical significance of gossypol in feed formulation. Journal of the American Oil Chemists Society 47, 448-450. DOI: 10.1007/BF02632964
Sotodeh, E., Amirimoghadam, J., Shahhosseini, G.R., Bagheri, D., 2016. Changes in the final weight, survival rate and fatty acids of the Caspian Sea salmon (Salmo trutta caspius) fed with irrigated and fermented soybean meal. Nutrition and Aquaculture 2, 33-46. DOI: 10.22124/JANB.2017.3167
Sampath W.W.H.A., Rathnayake R.M.D.S., Yang M, Zhang. W, Mai. K., 2020. Roles of dietary taurine in fish nutrition. Marine Life Science and Technology 2(4), 360-375. DOI: 10.1007/s42995-020-00051-1.
Storebakken, T., Shearer, K.D., Roem, A.J., 1998. Availability of protein, phosphorus and other elements in fish meal, soy-protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar. Aqauculture 161, 365-379. DOI: 10.1016/S0044-8486(97)00284-6
Tasa, H., Imani, A., Moghanlou, K. S., Nazdar, N and Moradi-Ozarlou, M., 2020. Aflatoxicosis in fingerling common carp (Cyprinus carpio) and protective effect of rosemary and thyme powder: Growth performance and digestive status. Aquaculture 527: 735437.‏ DOI: 10.1016/j.aquaculture.2020.735437
Tidwell, J.H., Allan, G.L., 2002. Fish as food: aquaculture's contribution. World Aquaculture 33, 44-48.
Van Immerseel, F., Fievez, V., De Buck, J., Pasmans, F., Martel, A., Haesebrouck, F and Ducatelle, R., 2004. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poultry Science 83(1), 69-74.‏ DOI: 10.1093/ps/83.1.69
Vikram, N., Katiyar1, S. K., Singh, C, B., Husain, R., Kumar Gangwar, L., 2020.   A Review on Anti-Nutritional Factors. International Journal of Current Microbiology and Applied Sciences 9(5), 1128-1137. DOI: https://doi.org/10.20546/ijcmas.2020.905.123
Way, J.L., 1984. Cyanide intoxication and its mechanism of antagonism. Annual Review of Pharmacology and Toxicology 24(1), 451-481. DOI: 10.1146/annurev.pa.24.040184.002315
Wanasundara, P. K.J.P.D., Shahidi, F., Brosnan, M.E., 1999. Changes in flax (Linum usitatissmum) seed nitrogenous compounds during germination. Food Chemistry 65(3), 289-295.‏ DOI: 10.1016/S0308-8146(98)00176-9
Yamamoto M., Saleh F., Hayashi K., 2004. A fermentation method to dry and convert shochu distillery byproduct to a source of protein and enzymes. Journal of Poultry Science 41, 275-280. DOI:10.2141/jpsa.41.275
Yamamoto, T., Iwashita, Y., Matsunari, H., Sugita, T., Furuita, H., Akimoto, A., Okamatsu, K., Suzuki, N., 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout (Oncorhynchus mykiss). Aquaculture 309, 173-180. DOI: 10.1016/j.aquaculture.2010.09.021
Yasar, S., 2003. Performance, gut size and ileal digesta viscosity of broiler chickens fed with a whole wheat added diet and the diets with different wheat particle sizes. International Journal of Poultry Science 2(1): 75-82. DOI: 10.3923/ijps.2003.75.82.
Yuan, L., Wu, L., Yang, C. and Lv, Q., 2013. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Journal of the Science of Food and Agriculture 93(2), 254-261. DOI: 10.1002/jsfa.5749
Yigit M., Erdem M., Koshio S., Ergün S., Tür-ker A., and Karaali B., 2006. Substituting fish meal with poultry by-product meal in diets for Black Sea turbot Psetta maeotica. Aquaculture Nutrition 12, 340-347. DOI: 10.1111/j.1365-2095.2006.00409.