اثرات نانوپلاستیک پلی استایرن بر شاخص های بافت شناسی کبد و شاخص‌های رشد و بقاء ماهی قزل آلای رنگین‌کمان (Oncorhynchus mykiss)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، گروه شیلات، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استادیار گروه شیلات، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران

4 استاد گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

5 دانشیار گروه علوم جانوری، دانشکدة زیست شناسی، دانشگاه تهران، تهران، ایران

6 استاد گروه رزین و مواد افزودنی، پژوهشکدة علوم رنگ و تکنولوژی، تهران، ایران

10.22059/jfisheries.2024.360226.1389

چکیده

علی­رغم توسعة استفاده از نانوپلاستیک پلی­ استایرن در حوزه‌های مختلف نانوفناوری، محیط‌زیست و صنایع و با وجود احتمال راهیابی آن­ ها به بوم­ سازگان ­های آبی، اطلاعات موجود در ارتباط با نانوبوم ­سم ­شناسی آن در آبزیان هنوز بسیار محدود است. در تحقیق حاضر، به منظور سمیت­ سنجی، نانوپلاستیک پلی ­استایرن NPsPS از راه جیرة غذایی، در چهار تیمار با غلظت­های 0 (شاهد)، 1/1، 10 و 100 میلی­ گرم در هر کیلو غذا، به بدن بچه ­ماهیان قزل­ آلای رنگین‌کمان (Oncorhynchus mykiss)، در یک تیمار مزمن 28 روزه و پس از گذشت یک هفته دورة سازگاری، در سه تکرار (در هر تکرار از هر غلظت، 15 عدد بچه ­ماهی)، منتقل شد. نمونه­ گیری از ماهیان بسته به آزمون هدف، 24 ساعت پس از قطع غذا صورت پذیرفت. نتایج نشان دادند که در بالاترین غلظت تغذیه با نانوپلاستیک پلی ­استایرن، نرخ بقا (SR) کاهش معنی­ داری نسبت به سایر تیمارها داشت (0/05>P) ولی سایر شاخص­ های رشد تفاوت آماری معنی­داری نشان ندادند (0/05<P). از منظر آسیب­ شناسی بافتی نانوپلاستیک پلی­استایرن در بافت کبد در تیمار 3 و 4، ماهیان قزل­ آلای رنگین‌کمان جراحاتی نظیر، واکوئولاسیون، نکروز، اتساع سینوزوئیدی و هسته پیکنوتیک مشاهده گردید. براساس نتایج به‌دست آمده، اثرات منفی رهایش نانوپلاستیک پلی ­استایرن بر سلامت و ایمنی در سطح سلولی در بافت­ شناسی کبد در نمونة آبزی مورد مطالعه مشاهده شد. به­ صورت کلی این مطالعه نشان داد، ورود ذرات نانوپلاستیک از طریق لوله گوارش باعث تغییر در پارامتر­های بافت‌شناسی کبد می­ شود. با این وجود مطالعات جامع ­تری در این زمینه مورد نیاز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Polystyrene Nanoplastics on Liver Histological Indices and Growth and Survival Indices of Rainbow Trout (Oncorhynchus mykiss)

نویسندگان [English]

  • Melika Mirzaei Nashtoroudi 1
  • Kamran Rezaei Tavabe 2
  • Amirreza Abed Elmdoust 3
  • Gholamreza Rafiee 4
  • Hasan Rahimian 5
  • Behzad Shirkavand Hadavand 6
1 M.Sc. graduate, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
2 Associate professor of Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 Assistant professor of Department of Fisheries, Faculty of Natural Resources, University of Tehran, Kara
4 Professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
5 Professor, Department of Zoology, Faculty of Biology, University of Tehran, Tehran, Iran
6 Professor, Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
چکیده [English]

Despite the development of polystyrene nanoplastics (PSNPs) in different fields, including nanotechnology, environment, industries, and their possible approach to aquatic ecosystems, a few studies have been conducted on nanoecotoxicology in aquatic animals. Therefore, this study was designed and conducted to measure the effect of toxicity of the PSNPs while transferring from the diet to the body of the fish (food concentrations= 0.1, 10, and 100 mg/kg) on juvenile rainbow trout (Oncorhynchus mykiss) in a 28-day chronic treatment and the control group (food concentration = 0 mg/kg) after the 7-day adaptation period, in three repetitions (15 juvenile trout were included in each repetition per concentration). Depending on the target test, fish sampling in the treatment group was taken after 24 h without food. According to the results, the survival rate (SR) (84.44 ± 3.14%) was significantly reduced with the highest dose of PSNPs compared to other treatments (P<0.05). But other growth indices did not show statistically significant difference (P>0.05). From the point of view of tissue pathology of polystyrene nanoplastic in the liver tissue in treatment 3 and 4, injuries such as vacuolation, necrosis, sinusoidal expansion and pyknotic nucleus were observed in rainbow trout. Based on the obtained results, the negative effects of polystyrene nanoplastic release on health and immunity at the cellular level were seen in liver histology in the studied aquatic sample. In general, this study showed that the entry of nanoplastic particles through the digestive tract causes changes in the histological parameters of the liver. However, more comprehensive studies are needed in this field.

کلیدواژه‌ها [English]

  • Polystyrene Nanoplastics
  • survival
  • Liver histology
  • Oncorhynchus mykiss
Bury, N.R., Eddy, F.B. and Codd, G.A., 1995. The effects of the cyanobacterium Microcystis aeruginosa, the cyanobacterial hepatotoxin microcystin–LR, and ammonia on growth rate and ionic regulation of brown trout. Journal of Fish Biology 46(6), 1042-1054.  DOI: 10.1111/j.1095-8649.1995.tb01408.x
Chen, Q., Gundlach, M., Yang, S., Jiang, J., Velki, M., Yin, D. and Hollert, H., 2017. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Science of The Total Environment 584, 1022-1031.  DOI: 10.1016/j.scitotenv.2017.01.156
Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin 62(12), 2588-2597.  DOI: 10.1016/j.marpolbul.2011.09.025
Deng, Y., Zhang, Y., Lemos, B. and Ren, H., 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports 7(1), 1-10.  DOI: 10.1038/srep46687
Ding, J., Huang, Y., Liu, S., Zhang, S., Zou, H., Wang, Z., Zhu, W., Geng, J., 2020. Toxicological effects of nano-and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless? Journal of Hazardous Materials 396, 122693.  DOI: 10.1016/j.jhazmat.2020.122693.
Erkmen, B., Karasu Benli, A.Ç., Ağuş, H.H., Yıldırım, Z., Mert, R., Erkoç, F., 2017. Impact of sublethal di‐n‐butyl phthalate on the aquaculture fish species Nile tilapia (Oreochromis niloticus): histopathology and oxidative stress assessment. Aquaculture Research 48(2), 675-685.  DOI: 10.1111/are.12914
Gigault, J., Ter Halle, A., Baudrimont, M., Pascal, P.Y., Gauffre, F., Phi, T.L., El Hadri, H., Grassl, B., Reynaud, S., 2018. Current opinion: what is a nanoplastic? Environmental pollution235, 1030-1034.  DOI: 10.1016/j.envpol.2018.01.024
Greven, A.C., Merk, T., Karagöz, F., Mohr, K., Klapper, M., Jovanović, B., Palić, D., 2016. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 35(12), 3093-3100.  DOI: 10.1002/etc.3501
Han, Y., Lian, F., Xiao, Z., Gu, S., Cao, X., Wang, Z., Xing, B., 2021. Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. Journal of Hazardous Materials 42, 127870.  DOI: 10.1016/j.jhazmat.2021.127870
Johari, S.A., Kalbassi, M.R., Soltani, M., Yu, I.J., 2013. Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iranian Journal of Fisheries Science 12(1), .76-95.  DOI: 10.22092/ijfs.2018.114262
Katzenberger, T.D., Thorpe, K.L., 2015. Assessing the impact of exposure to microplastics in fish: Evidence Report-SC120056. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/411982/Assessing_the_impact_of_exposure_to_microplastics_in_fish_report.pdf.
Lai, W., Xu, D., Li, J., Wang, Z., Ding, Y., Wang, X., Li, X., Xu, N., Mai, K., Ai, Q., 2021. Dietary polystyrene nanoplastics exposure alters liver lipid metabolism and muscle nutritional quality in carnivorous marine fish large yellow croaker (Larimichthys crocea). Journal of Hazardous Materials 419, 126454.  DOI: 10.1016/j.jhazmat.2021.126454
Liu, W., Qiao, Q., Chen, Y., Wu, K., Zhang, X., 2014. Microcystin-LR exposure to adult zebrafish (Danio rerio) leads to growth inhibition and immune dysfunction in F1 offspring, a parental transmission effect of toxicity. Aquatic Toxicology 155, 360-367.  DOI: 10.1016/j.aquatox.2014.07.011
Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., Ren, H., 2016. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology 50(7), 4054-4060.  DOI: 10.1021/acs.est.6b00183
Matthews, S., Mai, L., Jeong, C.B., Lee, J.S., Zeng, E.Y., Xu, E.G., 2021. Key mechanisms of micro-and nanoplastic (MNP) toxicity across taxonomic groups. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 247, 109056.  DOI: 10.1016/j.cbpc.2021.109056
Paris-Palacios, S., Biagianti-Risbourg, S., Vernet, G., 2000. Biochemical and (ultra) structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquatic Toxicology 50(1-2), 109-124.  DOI: 10.1016/S0166-445X(99)00090-9
Patimar, R., Adineh, H. and Mahdavi, M.J., 2009. Life history of the Western crested loach Paracobitis malapterura in the Zarrin-Gol River, East of the Elburz mountains (Northern Iran). Biologia 64(2), 350-355.  DOI: 10.2478/s11756-009-0052-4
Prust, M., Meijer, J., Westerink, R.H., 2020. The plastic brain: neurotoxicity of micro-and nanoplastics. Particle and Fibre Toxicology 17(1), 1-16.  DOI: 10.1186%2Fs12989-020-00358-y
Ramsden, C.S., Smith, T.J., Shaw, B.J., Handy, R.D., 2009. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18(7), 939-951.  DOI: 10.1007/s10646-009-0357-7
Reynaud, S., Aynard, A., Grassl, B. and Gigault, J., 2022. Nanoplastics: From model materials to colloidal fate. Current Opinion in Colloid & Interface Science 57, 101528.  DOI: 10.1016/j.cocis.2021.101528
Rocha, E., 1999. Histology and cytology of fish liver: a review. Ichthyology: Recent research advances, pp. 321-344.
Rochman, C.M., Kurobe, T., Flores, I., Teh, S.J., 2014. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Science of The Total Environment, 493, 656-661.  DOI: 10.1016/j.scitotenv.2014.06.051
Sharifuzzaman, S.M., Al-Harbi, A.H. and Austin, B., 2014. Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture 418, 55-61.  DOI: 10.1016/j.aquaculture.2013.10.006
Shohani, N., Pourmahdian, S., Hadavand, B.S., 2017, November. Response surface methodology for design of porous hollow sphere thermal insulator. In IOP Conference Series: Materials Science and Engineering (269(1), 012073). IOP Publishing.
Sun, H., Lü, K., Minter, E.J., Chen, Y., Yang, Z. and Montagnes, D.J., 2012. Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. Journal of Hazardous Materials 221, 213-219.  DOI: 10.1016/j.jhazmat.2012.04.036
Thiagarajan, V., Pavani, M., Archanaa, S., Seenivasan, R., Chandrasekaran, N., Suraishkumar, G.K., Mukherjee, A., 2019. Diminishing bioavailability and toxicity of P25 TiO2 NPs during continuous exposure to marine algae Chlorella Sp. Chemosphere 233, 363-372.  DOI: 10.1016/j.chemosphere.2019.05.270
Van der Oost, R., Beyer, J. and Vermeulen, N.P., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13(2), 57-149.  DOI: 10.1016/S1382-6689(02)00126-6
Xu, K., Ai, W., Wang, Q., Tian, L., Liu, D., Zhuang, Z., Wang, J., 2022. Toxicological effects of nanoplastics and phenanthrene to zebrafish (Danio rerio). Gondwana Research 108, 127-132.  DOI: 10.1016/j.gr.2021.05.012
Yin, K., Wang, Y., Zhao, H., Wang, D., Guo, M., Mu, M., Liu, Y., Nie, X., Li, B., Li, J., Xing, M., 2021. A comparative review of microplastics and nanoplastics: toxicity hazards on digestive, reproductive and nervous system. Science of The Total Environment 774, 145758.  DOI: 10.1016/j.scitotenv.2021.145758
Yin, L., Liu, H., Cui, H., Chen, B., Li, L. and Wu, F., 2019. Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials 380, 120861.  DOI: 10.1016/j.jhazmat.2019.120861
Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K., Liu, J., 2017. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science & Technology 51(7), 3794-3801.  DOI: 10.1021/acs.est.7b00369
Zhang, R., Silic, M.R., Schaber, A., Wasel, O., Freeman, J.L., Sepúlveda, M.S., 2020. Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish. Science of The Total Environment 724, 138065. DOI: 10.1016/j.scitotenv.2020.138065